A353217 Triangular numbers (A000217) with arithmetic derivative (A003415) a palindrome (A002113).
0, 1, 3, 6, 10, 15, 136, 153, 231, 741, 1711, 11026, 22366, 99681, 104653, 593505, 1348903, 1378630, 1886653, 3098805, 4388203, 4474536, 24587578, 26626753, 32092066, 45825951, 132804253, 165283471, 197239591, 355657785, 498727153, 866008153, 1074091726, 1144165366
Offset: 1
Examples
15 = A000217(5) and 15' = 8 = A002113(9), so 15 is a term. 153 = A000217(17) and 153' = 111 = A002113(21), so 153 is a term.
Programs
-
Magma
tr:=func
; pal:=func ; f:=func ; [n:n in [d*(d+1) div 2:d in [0..150000]]| pal(Floor(f(n)))]; -
Mathematica
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 50000}], PalindromeQ[d[#]] &] (* Amiram Eldar, Apr 30 2022 *)
-
Python
from itertools import chain, count, islice from sympy import factorint def A353217_gen(): # generator of terms return chain((0,1),filter(lambda m:(s:=str(sum((m*e//p for p,e in factorint(m).items()))))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],(n*(n+1)//2 for n in count(2)))) A353217_list = list(islice(A353217_gen(),20)) # Chai Wah Wu, Jun 24 2022