cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353217 Triangular numbers (A000217) with arithmetic derivative (A003415) a palindrome (A002113).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 136, 153, 231, 741, 1711, 11026, 22366, 99681, 104653, 593505, 1348903, 1378630, 1886653, 3098805, 4388203, 4474536, 24587578, 26626753, 32092066, 45825951, 132804253, 165283471, 197239591, 355657785, 498727153, 866008153, 1074091726, 1144165366
Offset: 1

Views

Author

Marius A. Burtea, Apr 30 2022

Keywords

Examples

			15 = A000217(5) and 15' = 8 = A002113(9), so 15 is a term.
153 = A000217(17) and 153' = 111 = A002113(21), so 153 is a term.
		

Crossrefs

Programs

  • Magma
    tr:=func; pal:=func; f:=func; [n:n in [d*(d+1) div 2:d in [0..150000]]| pal(Floor(f(n)))];
    
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Table[n*(n + 1)/2, {n, 0, 50000}], PalindromeQ[d[#]] &] (* Amiram Eldar, Apr 30 2022 *)
  • Python
    from itertools import chain, count, islice
    from sympy import factorint
    def A353217_gen(): # generator of terms
        return chain((0,1),filter(lambda m:(s:=str(sum((m*e//p for p,e in factorint(m).items()))))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],(n*(n+1)//2 for n in count(2))))
    A353217_list = list(islice(A353217_gen(),20)) # Chai Wah Wu, Jun 24 2022