A353247 Orders of the finite groups Aut(GL_2(K)) when K is a finite field with q = A246655(n) elements.
6, 48, 240, 480, 1344, 9072, 11520, 10560, 17472, 130560, 78336, 82080, 242880, 499200, 1415232, 584640, 476160, 4910400, 1214784, 2204160, 1907136, 4566144, 7526400, 7143552, 11497920, 7261440, 56609280, 12027840, 17176320, 18669312, 23662080, 136028160, 45736320, 56390400, 58404864, 82416000, 69927936
Offset: 1
Keywords
Examples
a(5) = 1344 since A246655(5) = 7, so a(5) = A352807(5)*eulerphi(2*(7-1)) = 336*4 = 1344. a(6) = 9072 since A246655(6) = 8, so a(6) = A352807(6)*eulerphi(2*(8-1)) = 1512*6 = 9072. a(7) = 11520 since A246655(7) = 9, so a(7) = A352807(7)*eulerphi(2*(9-1)) = 1440*8 = 15120.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Groupprops, Endomorphism structure of general linear group over a finite field
Crossrefs
Programs
-
PARI
[(q+1)*q*(q-1)*isprimepower(q)*eulerphi(2*(q-1)) | q <- [1..200], isprimepower(q)]
Formula
For q = p^r, |Aut(GL(2,q))| = r*q*(q^2-1)*eulerphi(2*(q-1)) = |PGammaL(2,q)|*eulerphi(2*(q-1)) (see A352807). In general, we have |Aut(GL(n,q))|/|Aut(SL(n,q))| = eulerphi(n*(q-1))/eulerphi(n).
Comments