cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353247 Orders of the finite groups Aut(GL_2(K)) when K is a finite field with q = A246655(n) elements.

Original entry on oeis.org

6, 48, 240, 480, 1344, 9072, 11520, 10560, 17472, 130560, 78336, 82080, 242880, 499200, 1415232, 584640, 476160, 4910400, 1214784, 2204160, 1907136, 4566144, 7526400, 7143552, 11497920, 7261440, 56609280, 12027840, 17176320, 18669312, 23662080, 136028160, 45736320, 56390400, 58404864, 82416000, 69927936
Offset: 1

Views

Author

Jianing Song, Apr 08 2022

Keywords

Comments

For orders of Aut(SL_2(K)) = Aut(PGL_2(K)) = Aut(PSL_2(K)) see A352807.
See the Groupprops link for a formula for |Aut(GL(n,q))| in general.

Examples

			a(5) = 1344 since A246655(5) = 7, so a(5) = A352807(5)*eulerphi(2*(7-1)) = 336*4 = 1344.
a(6) = 9072 since A246655(6) = 8, so a(6) = A352807(6)*eulerphi(2*(8-1)) = 1512*6 = 9072.
a(7) = 11520 since A246655(7) = 9, so a(7) = A352807(7)*eulerphi(2*(9-1)) = 1440*8 = 15120.
		

Crossrefs

Cf. A246655.
Order of GL(2,q): A059238;
SL(2,q): A329119;
PGL(2,q): A329119;
PSL(2,q): A352806;
Aut(GL(2,q)): this sequence;
PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)): A352807.

Programs

  • PARI
    [(q+1)*q*(q-1)*isprimepower(q)*eulerphi(2*(q-1)) | q <- [1..200], isprimepower(q)]

Formula

For q = p^r, |Aut(GL(2,q))| = r*q*(q^2-1)*eulerphi(2*(q-1)) = |PGammaL(2,q)|*eulerphi(2*(q-1)) (see A352807). In general, we have |Aut(GL(n,q))|/|Aut(SL(n,q))| = eulerphi(n*(q-1))/eulerphi(n).