cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353268 The least number with the same prime factorization pattern (A348717) as A329603(n) = A005940(1+(1+(3*A156552(n)))).

Original entry on oeis.org

2, 2, 8, 6, 18, 2, 50, 12, 20, 8, 98, 14, 242, 18, 32, 24, 338, 6, 578, 54, 72, 50, 722, 28, 42, 98, 60, 150, 1058, 2, 1682, 48, 200, 242, 162, 70, 1922, 338, 392, 108, 2738, 8, 3362, 294, 44, 578, 3698, 56, 110, 20, 968, 726, 4418, 12, 450, 300, 1352, 722, 5618, 26, 6962, 1058, 500, 96, 882, 18, 7442, 1014, 2312
Offset: 1

Views

Author

Antti Karttunen, Apr 09 2022

Keywords

Crossrefs

Coincides with A352892 on even n, and with A329603 on odd n.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A348717(n) = { my(f=factor(n)); if(#f~>0, my(pi1=primepi(f[1, 1])); for(k=1, #f~, f[k, 1] = prime(primepi(f[k, 1])-pi1+1))); factorback(f); }; \\ From A348717
    A353268(n) = A348717(A329603(n));

Formula

a(n) = A348717(A329603(n)).
For all n >= 1, a(2n) = A352892(2n), a(2n-1) = A329603(2n-1).