cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353303 Number of factorizations of n into factors k > 1 for which A156552(k) is a multiple of three.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 10 2022

Keywords

Comments

Number of factorizations of n into terms of A329609 that are larger than one.

Examples

			Divisors of 16 are [1, 2, 4, 8, 16]. When we apply A156552 to them, we obtain [0, 1, 3, 7, 15], of which only 0, 3 and 15 are multiples of three, therefore only factorizations 1*16 and 4*4 of 16 are counted, therefore a(16) = 2.
792 has 24 divisors in total, but only d = [1, 4, 9, 22, 36, 66, 88, 198, 264, 792] are such that A156552(d) is a multiple of 3. When using them, the following five factorizations are possible: 792 = 4*198 = 9*88 = 22*36 = 4*9*22, therefore a(792) = 5.
		

Crossrefs

Programs

  • PARI
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A353269(n) = (!(A156552(n)%3));
    A353303(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&A353269(d), s += A353303(n/d, d))); (s));

Formula

a(n) = 0 iff A353269(n) = 0.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.