A353312 Size of the finite cycle eventually reached by iterating A353313, or -1 if no finite cycle is ever reached.
1, 4, 103, 4, 4, 103, 103, 3, 103, 4, 103, 3, 4, 103, 3, 103, 6, 103, 103, 103, 3, 3, 103, 3, 103, 3, 103, 4, 3, 6, 103, 103, 103, 3, 103, 3, 4, 3, 103, 103, 3, 3, 3, 3, 3, 103, 3, 103, 6, 3, 6, 103, 6, 103, 103, 103, 6, 103, 3, 103, 3, 103, 3, 3, 3, 103, 103, 103, 6, 3, 3, 3, 103, 103, 3, 3, 3, 103, 103, 3, 103
Offset: 0
Keywords
Examples
Starting from n=2 and iterating A353313, we obtain the following 104 terms [2, 5, 10, 19, 34, 59, 100, 169, 284, 475, 794, 1325, 2210, 3685, 6144, 2048, 3415, 5694, 1898, 3165, 1055, 1760, 2935, 4894, 8159, 13600, 22669, 37784, 62975, 104960, 174935, 291560, 485935, 809894, 1349825, 2249710, 3749519, 6249200, 10415335, 17358894, 5786298, 1928766, 642922, 1071539, 1785900, 595300, 992169, 330723, 110241, 36747, 12249, 4083, 1361, 2270, 3785, 6310, 10519, 17534, 29225, 48710, 81185, 135310, 225519, 75173, 125290, 208819, 348034, 580059, 193353, 64451, 107420, 179035, 298394, 497325, 165775, 276294, 92098, 153499, 255834, 85278, 28426, 47379, 15793, 26324, 43875, 14625, 4875, 1625, 2710, 4519, 7534, 12559, 20934, 6978, 2326, 3879, 1293, 431, 720, 240, 80, 135, 45, 15] before the iteration returns to 5 again, in other words, forming a finite cycle of length 103, therefore a(2) = 103.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..19683