A353316 Heinz numbers of integer partitions that have a fixed point but whose conjugate does not (counted by A118199).
4, 8, 16, 27, 32, 45, 54, 63, 64, 81, 90, 99, 108, 117, 126, 128, 135, 153, 162, 171, 180, 189, 198, 207, 216, 234, 243, 252, 256, 261, 270, 279, 297, 306, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 459, 468, 477, 486, 504, 512, 513, 522
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 4: (1,1) 8: (1,1,1) 16: (1,1,1,1) 27: (2,2,2) 32: (1,1,1,1,1) 45: (3,2,2) 54: (2,2,2,1) 63: (4,2,2) 64: (1,1,1,1,1,1) 81: (2,2,2,2) 90: (3,2,2,1) 99: (5,2,2) 108: (2,2,2,1,1) 117: (6,2,2) 126: (4,2,2,1) 128: (1,1,1,1,1,1,1) For example, the partition (3,2,2,1) with Heinz number 90 has a fixed point at the second position, but its conjugate (4,3,1) has no fixed points, so 90 is in the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[100],pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]==0&]
Comments