A188674
Stack polyominoes with square core.
Original entry on oeis.org
1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352833 counts partitions by fixed points.
-
a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
(* second program *)
pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
A118199
Number of partitions of n having no parts equal to the size of their Durfee squares.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 40, 53, 68, 89, 113, 146, 184, 234, 293, 369, 458, 572, 706, 874, 1073, 1320, 1611, 1970, 2393, 2909, 3518, 4255, 5122, 6167, 7394, 8862, 10585, 12637, 15038, 17886, 21213, 25141, 29723, 35112, 41383, 48737, 57278
Offset: 0
a(7) = 3 because we have [7] with size of Durfee square 1, [4,3] with size of Durfee square 2 and [3,3,1] with size of Durfee square 2.
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352833 counts partitions by fixed points.
-
g:=1+sum(x^(k^2+k)/(1-x^k)/product((1-x^i)^2,i=1..k-1),k=1..20): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=0..54);
# second Maple program::
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(add(b(k, d) *b(n-d*(d+1)-k, d-1),
k=0..n-d*(d+1)), d=0..floor(sqrt(n))):
seq(a(n), n=0..70); # Alois P. Heinz, Apr 09 2012
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[Sum[b[k, d]*b[n-d*(d+1)-k, d-1], {k, 0, n-d*(d+1)}], {d, 0, Floor[Sqrt[n]]}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],pq[#]>0&&pq[conj[#]]==0&]],{n,0,30}] (* a(0) = 0, Gus Wiseman, May 21 2022 *)
A353317
Heinz numbers of integer partitions that have a fixed point and a conjugate fixed point (counted by A188674).
Original entry on oeis.org
2, 9, 15, 18, 21, 30, 33, 36, 39, 42, 51, 57, 60, 66, 69, 72, 78, 84, 87, 93, 102, 111, 114, 120, 123, 125, 129, 132, 138, 141, 144, 156, 159, 168, 174, 175, 177, 183, 186, 201, 204, 213, 219, 222, 228, 237, 240, 245, 246, 249, 250, 258, 264, 267, 275, 276
Offset: 1
The terms and their prime indices begin:
2: (1)
9: (2,2)
15: (3,2)
18: (2,2,1)
21: (4,2)
30: (3,2,1)
33: (5,2)
36: (2,2,1,1)
39: (6,2)
42: (4,2,1)
51: (7,2)
57: (8,2)
60: (3,2,1,1)
66: (5,2,1)
69: (9,2)
72: (2,2,1,1,1)
78: (6,2,1)
84: (4,2,1,1)
For example, the partition (2,2,1,1) with Heinz number 36 has a fixed point at the second position, as does its conjugate (4,2), so 36 is in the sequence.
These partitions are counted by
A188674.
Fixed point but no conjugate fixed point:
A353316, counted by
A118199.
A122111 represents partition conjugation using Heinz numbers.
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352826 ranks partitions w/o a fixed point, counted by
A064428 (unproved).
A352827 ranks partitions with a fixed point, counted by
A001522 (unproved).
Cf.
A001222,
A065770,
A093641,
A252464,
A325039,
A325163,
A325169,
A352828,
A352831,
A352832,
A352833.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]>0&]
Showing 1-3 of 3 results.
Comments