A353317 Heinz numbers of integer partitions that have a fixed point and a conjugate fixed point (counted by A188674).
2, 9, 15, 18, 21, 30, 33, 36, 39, 42, 51, 57, 60, 66, 69, 72, 78, 84, 87, 93, 102, 111, 114, 120, 123, 125, 129, 132, 138, 141, 144, 156, 159, 168, 174, 175, 177, 183, 186, 201, 204, 213, 219, 222, 228, 237, 240, 245, 246, 249, 250, 258, 264, 267, 275, 276
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 2: (1) 9: (2,2) 15: (3,2) 18: (2,2,1) 21: (4,2) 30: (3,2,1) 33: (5,2) 36: (2,2,1,1) 39: (6,2) 42: (4,2,1) 51: (7,2) 57: (8,2) 60: (3,2,1,1) 66: (5,2,1) 69: (9,2) 72: (2,2,1,1,1) 78: (6,2,1) 84: (4,2,1,1) For example, the partition (2,2,1,1) with Heinz number 36 has a fixed point at the second position, as does its conjugate (4,2), so 36 is in the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]]; conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Select[Range[100],pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]>0&]
Comments