cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A352873 Heinz numbers of integer partitions with nonnegative crank, counted by A064428.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2022

Keywords

Comments

First differs from A042968, A059557, and A195291 in lacking 2 and having 100.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's). [Definition copied from A342192; see A064428 for a different wording.]

Examples

			The terms together with their prime indices begin:
     1: ()         22: (5,1)      42: (4,2,1)
     3: (2)        23: (9)        43: (14)
     5: (3)        25: (3,3)      45: (3,2,2)
     6: (2,1)      26: (6,1)      46: (9,1)
     7: (4)        27: (2,2,2)    47: (15)
     9: (2,2)      29: (10)       49: (4,4)
    10: (3,1)      30: (3,2,1)    50: (3,3,1)
    11: (5)        31: (11)       51: (7,2)
    13: (6)        33: (5,2)      53: (16)
    14: (4,1)      34: (7,1)      54: (2,2,2,1)
    15: (3,2)      35: (4,3)      55: (5,3)
    17: (7)        37: (12)       57: (8,2)
    18: (2,2,1)    38: (8,1)      58: (10,1)
    19: (8)        39: (6,2)      59: (17)
    21: (4,2)      41: (13)       61: (18)
		

Crossrefs

* = unproved
These partitions are counted by A064428.
The case of zero crank is A342192, counted by A064410.
The case of positive crank is A352874.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A238394 counts reversed partitions without a fixed point, ranked by A352830.

Programs

  • Mathematica
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Select[Range[100],ck[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]>=0&]

Formula

Union of A352874 and A342192.

A001522 Number of n-stacks with strictly receding walls, or the number of Type A partitions of n in the sense of Auluck (1951).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 62, 82, 107, 139, 179, 230, 293, 372, 470, 591, 740, 924, 1148, 1422, 1756, 2161, 2651, 3244, 3957, 4815, 5844, 7075, 8545, 10299, 12383, 14859, 17794, 21267, 25368, 30207, 35902, 42600, 50462, 59678, 70465, 83079, 97800, 114967, 134956, 158205, 185209, 216546, 252859
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with positive crank (n>=2), cf. A064391. - Vladeta Jovovic, Sep 30 2001
Number of smooth weakly unimodal compositions of n into positive parts such that the first and last part are 1 (smooth means that successive parts differ by at most one), see example. Dropping the requirement for unimodality gives A186085. - Joerg Arndt, Dec 09 2012
Number of weakly unimodal compositions of n where the maximal part m appears at least m times, see example. - Joerg Arndt, Jun 11 2013
Also weakly unimodal compositions of n with first part 1, maximal up-step 1, and no consecutive up-steps; see example. The smooth weakly unimodal compositions are recovered by shifting all rows above the bottom row to the left by one position with respect to the next lower row. - Joerg Arndt, Mar 30 2014
It would seem from Stanley that he regards a(0)=0 for this sequence and A001523. - Michael Somos, Feb 22 2015
From Gus Wiseman, Mar 30 2021: (Start)
Also the number of odd-length compositions of n with alternating parts strictly decreasing. These are finite odd-length sequences q of positive integers summing to n such that q(i) > q(i+2) for all possible i. The even-length version is A064428. For example, the a(1) = 1 through a(9) = 14 compositions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(211) (221) (231) (241) (251) (261)
(311) (312) (322) (332) (342)
(321) (331) (341) (351)
(411) (412) (413) (423)
(421) (422) (432)
(511) (431) (441)
(512) (513)
(521) (522)
(611) (531)
(612)
(621)
(711)
(32211)
(End)
In the Ferrers diagram of a partition x of n, count the dots in each diagonal parallel to the main diagonal (starting at the top-right, say). The result diag(x) is a smooth weakly unimodal composition of n into positive parts such that the first and last part are 1. For example, diag(5541) = 11233221. The function diag is many-to-one; the size of its codomain as a set is a(n). If diag(x) = diag(y), each hook of x can be slid by the same amount past the main diagonal to get y. For example, diag(5541) = diag(44331). - George Beck, Sep 26 2021
From Gus Wiseman, May 23 2022: (Start)
Conjecture: Also the number of integer partitions y of n with a fixed point y(i) = i. These partitions are ranked by A352827. The conjecture is stated at A238395, but Resta tells me he may not have had a proof. The a(1) = 1 through a(8) = 10 partitions are:
(1) (11) (111) (22) (32) (42) (52) (62)
(1111) (221) (222) (322) (422)
(11111) (321) (421) (521)
(2211) (2221) (2222)
(111111) (3211) (3221)
(22111) (4211)
(1111111) (22211)
(32111)
(221111)
(11111111)
Note that these are not the same partitions (compare A352827 to A352874), only the same count (apparently).
(End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022

Examples

			For a(6)=5 we have the following stacks:
.x... ..x.. ...x. .xx.
xxxxx xxxxx xxxxx xxxx xxxxxx
.
From _Joerg Arndt_, Dec 09 2012: (Start)
There are a(9) = 14 smooth weakly unimodal compositions of 9:
01:   [ 1 1 1 1 1 1 1 1 1 ]
02:   [ 1 1 1 1 1 1 2 1 ]
03:   [ 1 1 1 1 1 2 1 1 ]
04:   [ 1 1 1 1 2 1 1 1 ]
05:   [ 1 1 1 1 2 2 1 ]
06:   [ 1 1 1 2 1 1 1 1 ]
07:   [ 1 1 1 2 2 1 1 ]
08:   [ 1 1 2 1 1 1 1 1 ]
09:   [ 1 1 2 2 1 1 1 ]
10:   [ 1 1 2 2 2 1 ]
11:   [ 1 2 1 1 1 1 1 1 ]
12:   [ 1 2 2 1 1 1 1 ]
13:   [ 1 2 2 2 1 1 ]
14:   [ 1 2 3 2 1 ]
(End)
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(9) = 14 weakly unimodal compositions of 9 where the maximal part m appears at least m times:
01:  [ 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 ]
03:  [ 1 1 1 1 2 2 1 ]
04:  [ 1 1 1 2 2 1 1 ]
05:  [ 1 1 1 2 2 2 ]
06:  [ 1 1 2 2 1 1 1 ]
07:  [ 1 1 2 2 2 1 ]
08:  [ 1 2 2 1 1 1 1 ]
09:  [ 1 2 2 2 1 1 ]
10:  [ 1 2 2 2 2 ]
11:  [ 2 2 1 1 1 1 1 ]
12:  [ 2 2 2 1 1 1 ]
13:  [ 2 2 2 2 1 ]
14:  [ 3 3 3 ]
(End)
From _Joerg Arndt_, Mar 30 2014: (Start)
There are a(9) = 14 compositions of 9 with first part 1, maximal up-step 1, and no consecutive up-steps:
01:  [ 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 1 2 1 ]
04:  [ 1 1 1 1 1 2 1 1 ]
05:  [ 1 1 1 1 1 2 2 ]
06:  [ 1 1 1 1 2 1 1 1 ]
07:  [ 1 1 1 1 2 2 1 ]
08:  [ 1 1 1 2 1 1 1 1 ]
09:  [ 1 1 1 2 2 1 1 ]
10:  [ 1 1 1 2 2 2 ]
11:  [ 1 1 2 1 1 1 1 1 ]
12:  [ 1 1 2 2 1 1 1 ]
13:  [ 1 1 2 2 2 1 ]
14:  [ 1 1 2 2 3 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
		

References

  • G. E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, pp. 21-34 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.

Crossrefs

A version for permutations is A002467, complement A000166.
The case of zero crank is A064410, ranked by A342192.
The case of nonnegative crank is A064428, ranked by A352873.
A strict version is A352829, complement A352828.
Conjectured to be column k = 1 of A352833.
These partitions (positive crank) are ranked by A352874.
A000700 counts self-conjugate partitions, ranked by A088902.
A064391 counts partitions by crank.
A115720 and A115994 count partitions by their Durfee square.
A257989 gives the crank of the partition with Heinz number n.
Counting compositions: A003242, A114921, A238351, A342527, A342528, A342532.
Fixed points of reversed partitions: A238352, A238394, A238395, A352822, A352830, A352872.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<=0, `if`(i=1, 1, 0),
          `if`(n<0 or i<1, 0, b(n-i, i, t)+b(n-(i-1), i-1, false)+
          `if`(t, b(n-(i+1), i+1, t), 0)))
        end:
    a:= n-> b(n-1, 1, true):
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 26 2014
    # second Maple program:
    A001522 := proc(n)
        local r,a;
        a := 0 ;
        if n = 0 then
            return 1 ;
        end if;
        for r from 1 do
            if r*(r+1) > 2*n then
                return a;
            else
                a := a-(-1)^r*combinat[numbpart](n-r*(r+1)/2) ;
            end if;
        end do:
    end proc: # R. J. Mathar, Mar 07 2015
  • Mathematica
    max = 50; f[x_] := 1 + Sum[-(-1)^k*x^(k*(k+1)/2), {k, 1, max}] / Product[(1-x^k), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
    b[n_, i_, t_] := b[n, i, t] = If[n <= 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, b[n-i, i, t] + b[n - (i-1), i-1, False] + If[t, b[n - (i+1), i+1, t], 0]]]; a[n_] := b[n-1, 1, True]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[Sum[(-1)^(j-1)*PartitionsP[n-j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 1, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *)
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[If[n==0,1,Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],OddQ@*Length],ici]]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1+8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Jul 22 2003 */
    
  • PARI
    N=66; q='q+O('q^N);
    Vec( 1 + sum(n=1, N, q^(n^2)/(prod(k=1,n-1,1-q^k)^2*(1-q^n)) ) ) \\ Joerg Arndt, Dec 09 2012
    
  • Sage
    def A001522(n):
        if n < 4: return 1
        return (number_of_partitions(n) - [p.crank() for p in Partitions(n)].count(0))/2
    [A001522(n) for n in range(30)]  # Peter Luschny, Sep 15 2014

Formula

a(n) = (A000041(n) - A064410(n)) / 2 for n>=2.
G.f.: 1 + ( Sum_{k>=1} -(-1)^k * x^(k*(k+1)/2) ) / ( Product_{k>=1} 1-x^k ).
G.f.: 1 + ( Sum_{n>=1} q^(n^2) / ( ( Product_{k=1..n-1} 1-q^k )^2 * (1-q^n) ) ). - Joerg Arndt, Dec 09 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) [Auluck, 1951]. - Vaclav Kotesovec, Sep 26 2016
a(n) = A000041(n) - A064428(n). - Gus Wiseman, Mar 30 2021
a(n) = A064428(n) - A064410(n). - Gus Wiseman, May 23 2022

Extensions

a(0) changed from 0 to 1 by Joerg Arndt, Mar 30 2014
Edited definition. - N. J. A. Sloane, Mar 31 2021

A065608 Sum of divisors of n minus the number of divisors of n.

Original entry on oeis.org

0, 1, 2, 4, 4, 8, 6, 11, 10, 14, 10, 22, 12, 20, 20, 26, 16, 33, 18, 36, 28, 32, 22, 52, 28, 38, 36, 50, 28, 64, 30, 57, 44, 50, 44, 82, 36, 56, 52, 82, 40, 88, 42, 78, 72, 68, 46, 114, 54, 87, 68, 92, 52, 112, 68, 112, 76, 86, 58, 156, 60, 92, 98, 120, 80, 136, 66, 120, 92
Offset: 1

Views

Author

Jason Earls, Nov 06 2001

Keywords

Comments

Number of permutations p of {1,2,...,n} such that p(k)-k takes exactly two distinct values. Example: a(4)=4 because we have 4123, 3412, 2143 and 2341. - Max Alekseyev and Emeric Deutsch, Dec 22 2006
Number of solutions to the Diophantine equation xy + yz = n, with x,y,z >= 1.
In other words, number of ways to write n = (a + b) * k for positive integers a, b, k. - Gus Wiseman, Mar 25 2021
Not the same as A184396(n): a(66) = 136 while A184396(66) = 137. - Wesley Ivan Hurt, Dec 26 2013
From Gus Wiseman, Mar 25 2021: (Start)
Also the number of compositions of n into an even number of parts with alternating parts equal. These are finite even-length sequences q of positive integers summing to n such that q(i) = q(i+2) for all possible i. For example, the a(2) = 1 through a(8) = 11 compositions are:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5)
(1,1,1,1) (4,1) (4,2) (4,3) (4,4)
(5,1) (5,2) (5,3)
(1,2,1,2) (6,1) (6,2)
(2,1,2,1) (7,1)
(1,1,1,1,1,1) (1,3,1,3)
(2,2,2,2)
(3,1,3,1)
(1,1,1,1,1,1,1,1)
The odd-length version is A062968.
The version with alternating parts weakly decreasing is A114921, or A342528 if odd-length compositions are included.
The version with alternating parts unequal is A342532, or A224958 if odd-length compositions are included (unordered: A339404/A000726).
Allowing odd lengths as well as even gives A342527.
(End)
Inverse Möbius transform of n-1. - Wesley Ivan Hurt, Jun 29 2024

Crossrefs

Starting (1, 2, 4, 4, 8, 6, ...), = row sums of triangle A077478. - Gary W. Adamson, Nov 12 2007
Starting with "1" = row sums of triangle A176919. - Gary W. Adamson, Apr 29 2010
Column k=2 of A125182.
A175342/A325545 count compositions with constant/distinct differences.

Programs

  • GAP
    List([1..100],n->Sigma(n)-Tau(n)); # Muniru A Asiru, Mar 19 2018
    
  • Maple
    with(numtheory): seq(sigma(n)-tau(n),n=1..70); # Emeric Deutsch, Dec 22 2006
  • Mathematica
    Table[DivisorSigma[1,n]-DivisorSigma[0,n], {n,100}] (* Wesley Ivan Hurt, Dec 26 2013 *)
  • PARI
    a(n) = sigma(n) - numdiv(n); \\ Harry J. Smith, Oct 23 2009
    
  • Python
    from math import prod
    from sympy import factorint
    def A065608(n):
        f = factorint(n).items()
        return prod((p**(e+1)-1)//(p-1) for p, e in f)-prod(e+1 for p,e in f) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = sigma(n) - d(n) = A000203(n) - A000005(n).
a(n) = Sum_{d|n} (d-1). - Wesley Ivan Hurt, Dec 26 2013
G.f.: Sum_{k>=1} x^(2*k)/(1-x^k)^2. - Benoit Cloitre, Apr 21 2003
G.f.: Sum_{n>=1} (n-1)*x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(1-1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 18 2018
G.f.: Sum_{n >= 1} q^(n^2)*( (n - 1) + q^n - (n - 1)*q^(2*n) )/(1 - q^n)^2 - differentiate equation 1 in Arndt with respect to t, then set x = q and t = q. - Peter Bala, Jan 22 2021
a(n) = A342527(n) - A062968(n). - Gus Wiseman, Mar 25 2021
a(n) = n * A010054(n) - Sum_{k>=1} a(n - k*(k+1)/2), assuming a(n) = 0 for n <= 0 (Kobayashi, 2022). - Amiram Eldar, Jun 23 2023

A238394 Number of partitions of n that sorted in increasing order do not contain a part k in position k.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 9, 12, 13, 17, 22, 28, 34, 42, 48, 59, 71, 88, 106, 130, 151, 181, 210, 250, 295, 354, 417, 494, 577, 675, 780, 909, 1053, 1231, 1431, 1668, 1930, 2240, 2573, 2963, 3392, 3896, 4461, 5129, 5873, 6742, 7710, 8816, 10043, 11439
Offset: 0

Views

Author

Giovanni Resta, Feb 26 2014

Keywords

Comments

The definition forbids partitions with a part equal to 1, so the smallest possible part is 2, which however can appear at most once.
Note that considering partitions in standard decreasing order, we obtain A064428.

Examples

			a(6) = 3, because of the 11 partitions of 6 only 3 do not contain a 1 in position 1, a 2 in position 2, or a 3 in position 3, namely (3,3), (2,4) and (6).
From _Joerg Arndt_, Mar 23 2014: (Start)
There are a(15) = 22 such partitions of 15:
01:  [ 2 3 4 6 ]
02:  [ 2 3 5 5 ]
03:  [ 2 3 10 ]
04:  [ 2 4 4 5 ]
05:  [ 2 4 9 ]
06:  [ 2 5 8 ]
07:  [ 2 6 7 ]
08:  [ 2 13 ]
09:  [ 3 3 4 5 ]
10:  [ 3 3 9 ]
11:  [ 3 4 8 ]
12:  [ 3 5 7 ]
13:  [ 3 6 6 ]
14:  [ 3 12 ]
15:  [ 4 4 7 ]
16:  [ 4 5 6 ]
17:  [ 4 11 ]
18:  [ 5 5 5 ]
19:  [ 5 10 ]
20:  [ 6 9 ]
21:  [ 7 8 ]
22:  [ 15 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand(
           x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i)))))
        end:
    a:= n-> (p-> add(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 26 2014
  • Mathematica
    a[n_] := Length@ Select[ IntegerPartitions@n, 0 < Min@ Abs[ Reverse@# - Range@ Length@#] &]; Array[a, 30]
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]]; a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, n]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)

Formula

a(n) + A238395(n) = p(n) = A000041(n).
a(n) = Sum_{k>=0} A238406(n,k). - Alois P. Heinz, Feb 26 2014
a(n) = A238352(n,0). - Alois P. Heinz, Jun 08 2014

A064410 Number of partitions of n with zero crank.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 17, 19, 27, 30, 41, 48, 62, 73, 95, 110, 140, 166, 206, 243, 302, 354, 435, 513, 622, 733, 887, 1039, 1249, 1467, 1750, 2049, 2438, 2847, 3371, 3934, 4634, 5398, 6343, 7367, 8626, 10009, 11677, 13521, 15737, 18184
Offset: 1

Views

Author

Vladeta Jovovic, Sep 29 2001

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).

Examples

			a(10)=4 because there are 4 partitions of 10 with zero crank: 1+1+2+3+3, 1+1+4+4, 1+1+3+5 and 1+9.
From _Gus Wiseman_, Apr 02 2021: (Start)
The a(3) = 1 through a(14) = 11 partitions (A..D = 10..13):
  21  31  41  51  61  71    81    91     A1     B1      C1      D1
                      3311  4311  4411   5411   5511    6511    6611
                                  5311   6311   6411    7411    7511
                                  33211  43211  7311    8311    8411
                                                44211   54211   9311
                                                53211   63211   55211
                                                332211  432211  64211
                                                                73211
                                                                442211
                                                                532211
                                                                3322211
(End)
		

Crossrefs

The version for positive crank is A001522.
Central column of A064391.
The version for nonnegative crank is A064428.
The Heinz numbers of these partitions are A342192.
A003242 counts anti-run compositions.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[x - 1 + Sum[(-1)^k*(x^(k*(k + 1)/2) - x^(k*(k - 1)/2)), {k, 1, nmax}] / Product[1 - x^k, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 26 2016 *)
    Flatten[{0, Table[PartitionsP[n] - 2*Sum[(-1)^(j+1)*PartitionsP[n - j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 2, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *)
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Table[Length[Select[IntegerPartitions[n],ck[#]==0&]],{n,0,30}] (* Gus Wiseman, Apr 02 2021 *)
  • Sage
    [[p.crank() for p in Partitions(n)].count(0) for n in (1..20)] # Peter Luschny, Sep 15 2014

Formula

a(n) = A000041(n) - 2*A001522(n). a(n) = A064391(n, 0).
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (3 * 2^(9/2) * n^(3/2)). - Vaclav Kotesovec, May 06 2018
a(n > 1) = A064428(n) - A001522(n), where A001522/A064428 count odd/even-length compositions with alternating parts strictly decreasing. - Gus Wiseman, Apr 02 2021
From Peter Bala, Feb 03 2024: (Start)
For n >= 2, a(n) = A188674(n+1) - A188674(n) (Hopkins and Sellers, Proposition 7).
Equivalently, the g.f. A(x) = (1 - x) * Sum_{n >= 1} x^(n*(n+2)) / Product{k = 1..n} (1 - x^k)^2. (End)

Extensions

More terms from Reiner Martin, Dec 26 2001

A352822 Number of fixed points y(i) = i, where y is the weakly increasing sequence of prime indices of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6500 are {1,1,3,3,3,6} with fixed points at positions {1,3,6}, so a(6500) = 3.
		

Crossrefs

* = unproved
Positions of first appearances are A002110.
The triangle version is A238352.
Positions of 0's are A352830, counted by A238394.
Positions of 1's are A352831, counted by A352832.
A version for compositions is A352512, complement A352513, triangle A238349.
The complement is A352823.
The reverse version is A352824, complement A352825.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A115720 and A115994 count partitions by their Durfee square.
A238395 counts reversed partitions with a fixed point, ranked by A352872.

Programs

  • Maple
    f:= proc(n) local F,J,t;
      F:= sort(ifactors(n)[2],(s,t) -> s[1] numtheory:-pi(t[1])$t[2], F);
      nops(select(t -> J[t]=t, [$1..nops(J)]));
    end proc:
    map(f, [$1..200]); # Robert Israel, Apr 11 2023
  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],{n,100}]
  • PARI
    A352822(n) = { my(f=factor(n),i=0,c=0); for(k=1,#f~,while(f[k,2], f[k,2]--; i++; c += (i==primepi(f[k,1])))); (c); }; \\ Antti Karttunen, Apr 11 2022

Formula

a(n) = A001222(n) - A352823(n). - Antti Karttunen, Apr 11 2022

Extensions

Data section extended up to 105 terms by Antti Karttunen, Apr 11 2022

A352827 Heinz numbers of integer partitions y with a fixed point y(i) = i. Such a fixed point is unique if it exists.

Original entry on oeis.org

2, 4, 8, 9, 15, 16, 18, 21, 27, 30, 32, 33, 36, 39, 42, 45, 51, 54, 57, 60, 63, 64, 66, 69, 72, 78, 81, 84, 87, 90, 93, 99, 102, 108, 111, 114, 117, 120, 123, 125, 126, 128, 129, 132, 135, 138, 141, 144, 153, 156, 159, 162, 168, 171, 174, 175, 177, 180, 183
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: (1)
    4: (1,1)
    8: (1,1,1)
    9: (2,2)
   15: (3,2)
   16: (1,1,1,1)
   18: (2,2,1)
   21: (4,2)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   33: (5,2)
   36: (2,2,1,1)
   39: (6,2)
   42: (4,2,1)
   45: (3,2,2)
   51: (7,2)
   54: (2,2,2,1)
For example, the partition (3,2,2) with Heinz number 45 has a fixed point at position 2, so 45 is in the sequence.
		

Crossrefs

* = unproved
*These partitions are counted by A001522, strict A352829.
*The complement is A352826, counted by A064428.
The complement reverse version is A352830, counted by A238394.
The reverse version is A352872, counted by A238395
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, unfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352828 counts strict partitions without a fixed point.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==1&]

A352523 Number of integer compositions of n with exactly k nonfixed points (parts not on the diagonal).

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 4, 2, 2, 0, 0, 5, 5, 4, 2, 0, 1, 3, 12, 8, 6, 2, 0, 0, 7, 14, 19, 14, 8, 2, 0, 0, 8, 21, 33, 32, 22, 10, 2, 0, 0, 9, 30, 54, 63, 54, 32, 12, 2, 0, 1, 6, 47, 80, 116, 116, 86, 44, 14, 2, 0, 0, 11, 53, 129, 194, 229, 202, 130, 58, 16, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			Triangle begins:
   1
   1   0
   0   2   0
   1   1   2   0
   0   4   2   2   0
   0   5   5   4   2   0
   1   3  12   8   6   2   0
   0   7  14  19  14   8   2   0
   0   8  21  33  32  22  10   2   0
   0   9  30  54  63  54  32  12   2   0
   1   6  47  80 116 116  86  44  14   2   0
   ...
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (123)  (6)   (24)    (231)    (2112)   (21111)    .
         (15)  (33)    (312)    (2121)   (111111)
         (42)  (51)    (411)    (3111)
               (114)   (1113)   (11112)
               (132)   (1122)   (11121)
               (141)   (1311)   (11211)
               (213)   (2211)
               (222)   (12111)
               (321)
               (1131)
               (1212)
               (1221)
		

Crossrefs

Column k = 0 is A010054.
Row sums are A011782.
The version for permutations is A098825.
The corresponding rank statistic is A352513.
Column k = 1 is A352520.
A238349 and A238350 count comps by fixed points, first col A238351, rank stat A352512.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add(`if`(i=j, 1, x)*b(n-j, i+1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 19 2025
  • Mathematica
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= sum(i=0, N, prod(j=1, i, y*(x/(1-x)-x^j)+x^j))); vector(N, n, my(r=Vecrev(polcoeff(h, n-1))); if(n<2, r, concat(r,[0])))}
    T_xy(10) \\ John Tyler Rascoe, Mar 21 2025

Formula

G.f.: Sum_{i>=0} Product_{j=1..i} y*(x/(1-x) - x^j) + x^j. - John Tyler Rascoe, Mar 19 2025

A238395 Number of partitions of n that sorted in increasing order contain a part k in position k for some k.

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 34, 47, 65, 88, 118, 154, 203, 263, 343, 442, 568, 721, 914, 1149, 1445, 1807, 2255, 2800, 3468, 4270, 5250, 6425, 7855, 9566, 11635, 14103, 17068, 20584, 24784, 29754, 35670, 42653, 50934, 60688, 72212, 85742, 101662, 120293
Offset: 0

Views

Author

Giovanni Resta, Feb 26 2014

Keywords

Comments

Note that considering partitions in standard decreasing order, we obtain A001522.

Examples

			a(6) = 11 - 3 = 8, because of the 11 partitions of 6 only 3 do not contain a 1 in position 1, a 2 in position 2, or a 3 in position 3, namely (3,3), (2,4) and (6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [0, 1],
          `if`(i<1, [0$2], b(n, i-1) +`if`(i>n, 0,
          (p->[p[1] +coeff(p[2], x, i-1), expand(x*(p[2]-
           coeff(p[2], x, i-1)*x^(i-1)))])(b(n-i, i)))))
        end:
    a:= n-> b(n$2)[1]:
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 26 2014
  • Mathematica
    a[n_] := Length@ Select[IntegerPartitions@ n, MemberQ[ Reverse@# - Range@ Length@#, 0] &]; Array[a, 30]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n==0, {0, 1}, If[i<1, {0, 0}, b[n, i-1] + If[i>n, 0, Function[p, {p[[1]] + Coefficient[p[[2]], x, i-1], x*(p[[2]] - Coefficient[p[[2]], x, i-1]*x^(i-1))}][b[n-i, i]]]]]; a[n_] := b[n, n][[1]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) + A238394(n) = p(n) = A000041(n).

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).
Showing 1-10 of 46 results. Next