A001522
Number of n-stacks with strictly receding walls, or the number of Type A partitions of n in the sense of Auluck (1951).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 62, 82, 107, 139, 179, 230, 293, 372, 470, 591, 740, 924, 1148, 1422, 1756, 2161, 2651, 3244, 3957, 4815, 5844, 7075, 8545, 10299, 12383, 14859, 17794, 21267, 25368, 30207, 35902, 42600, 50462, 59678, 70465, 83079, 97800, 114967, 134956, 158205, 185209, 216546, 252859
Offset: 0
For a(6)=5 we have the following stacks:
.x... ..x.. ...x. .xx.
xxxxx xxxxx xxxxx xxxx xxxxxx
.
From _Joerg Arndt_, Dec 09 2012: (Start)
There are a(9) = 14 smooth weakly unimodal compositions of 9:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 1 ]
03: [ 1 1 1 1 1 2 1 1 ]
04: [ 1 1 1 1 2 1 1 1 ]
05: [ 1 1 1 1 2 2 1 ]
06: [ 1 1 1 2 1 1 1 1 ]
07: [ 1 1 1 2 2 1 1 ]
08: [ 1 1 2 1 1 1 1 1 ]
09: [ 1 1 2 2 1 1 1 ]
10: [ 1 1 2 2 2 1 ]
11: [ 1 2 1 1 1 1 1 1 ]
12: [ 1 2 2 1 1 1 1 ]
13: [ 1 2 2 2 1 1 ]
14: [ 1 2 3 2 1 ]
(End)
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(9) = 14 weakly unimodal compositions of 9 where the maximal part m appears at least m times:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 2 ]
03: [ 1 1 1 1 2 2 1 ]
04: [ 1 1 1 2 2 1 1 ]
05: [ 1 1 1 2 2 2 ]
06: [ 1 1 2 2 1 1 1 ]
07: [ 1 1 2 2 2 1 ]
08: [ 1 2 2 1 1 1 1 ]
09: [ 1 2 2 2 1 1 ]
10: [ 1 2 2 2 2 ]
11: [ 2 2 1 1 1 1 1 ]
12: [ 2 2 2 1 1 1 ]
13: [ 2 2 2 2 1 ]
14: [ 3 3 3 ]
(End)
From _Joerg Arndt_, Mar 30 2014: (Start)
There are a(9) = 14 compositions of 9 with first part 1, maximal up-step 1, and no consecutive up-steps:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 2 1 ]
04: [ 1 1 1 1 1 2 1 1 ]
05: [ 1 1 1 1 1 2 2 ]
06: [ 1 1 1 1 2 1 1 1 ]
07: [ 1 1 1 1 2 2 1 ]
08: [ 1 1 1 2 1 1 1 1 ]
09: [ 1 1 1 2 2 1 1 ]
10: [ 1 1 1 2 2 2 ]
11: [ 1 1 2 1 1 1 1 1 ]
12: [ 1 1 2 2 1 1 1 ]
13: [ 1 1 2 2 2 1 ]
14: [ 1 1 2 2 3 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
- G. E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, pp. 21-34 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- A. Blecher and A. Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Erich Friedman, Illustration of initial terms
- A. D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
Conjectured to be column k = 1 of
A352833.
These partitions (positive crank) are ranked by
A352874.
A064391 counts partitions by crank.
A257989 gives the crank of the partition with Heinz number n.
-
b:= proc(n, i, t) option remember; `if`(n<=0, `if`(i=1, 1, 0),
`if`(n<0 or i<1, 0, b(n-i, i, t)+b(n-(i-1), i-1, false)+
`if`(t, b(n-(i+1), i+1, t), 0)))
end:
a:= n-> b(n-1, 1, true):
seq(a(n), n=0..70); # Alois P. Heinz, Feb 26 2014
# second Maple program:
A001522 := proc(n)
local r,a;
a := 0 ;
if n = 0 then
return 1 ;
end if;
for r from 1 do
if r*(r+1) > 2*n then
return a;
else
a := a-(-1)^r*combinat[numbpart](n-r*(r+1)/2) ;
end if;
end do:
end proc: # R. J. Mathar, Mar 07 2015
-
max = 50; f[x_] := 1 + Sum[-(-1)^k*x^(k*(k+1)/2), {k, 1, max}] / Product[(1-x^k), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
b[n_, i_, t_] := b[n, i, t] = If[n <= 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, b[n-i, i, t] + b[n - (i-1), i-1, False] + If[t, b[n - (i+1), i+1, t], 0]]]; a[n_] := b[n-1, 1, True]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 01 2015, after Alois P. Heinz *)
Flatten[{1, Table[Sum[(-1)^(j-1)*PartitionsP[n-j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 1, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *)
ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
Table[If[n==0,1,Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],OddQ@*Length],ici]]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
-
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1+8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Jul 22 2003 */
-
N=66; q='q+O('q^N);
Vec( 1 + sum(n=1, N, q^(n^2)/(prod(k=1,n-1,1-q^k)^2*(1-q^n)) ) ) \\ Joerg Arndt, Dec 09 2012
-
def A001522(n):
if n < 4: return 1
return (number_of_partitions(n) - [p.crank() for p in Partitions(n)].count(0))/2
[A001522(n) for n in range(30)] # Peter Luschny, Sep 15 2014
A064428
Number of partitions of n with nonnegative crank.
Original entry on oeis.org
1, 0, 1, 2, 3, 4, 6, 8, 12, 16, 23, 30, 42, 54, 73, 94, 124, 158, 206, 260, 334, 420, 532, 664, 835, 1034, 1288, 1588, 1962, 2404, 2953, 3598, 4392, 5328, 6466, 7808, 9432, 11338, 13632, 16326, 19544, 23316, 27806, 33054, 39273, 46534, 55096, 65076, 76808
Offset: 0
G.f. = 1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + 23*x^10 + ... - _Michael Somos_, Jan 15 2018
From _Gus Wiseman_, May 21 2022: (Start)
The a(0) = 1 through a(8) = 12 partitions with nonnegative crank:
() . (2) (3) (4) (5) (6) (7) (8)
(21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(221) (51) (61) (62)
(222) (322) (71)
(321) (331) (332)
(421) (422)
(2221) (431)
(521)
(2222)
(3221)
(3311)
(End)
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (i).
- G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook Part I, Springer, see p. 169 Entry 6.7.1.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- George E. Andrews and David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
- Cody Armond and Oliver T. Dasbach, Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial, arXiv:1106.3948 [math.GT], 2011.
- Cristina Ballantine and Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
- Rupam Barman and Ajit Singh, On Mex-related partition functions of Andrews and Newman, arXiv:2009.11602 [math.NT], 2020.
- Aubrey Blecher and Arnold Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
- Brian Hopkins, James A. Sellers, and Ae Ja Yee, Combinatorial Perspectives on the Crank and Mex Partition Statistics, arXiv:2108.09414 [math.CO], 2021.
- Mbavhalelo Mulokwe and Konstantinos Zoubos, Free fermions, neutrality and modular transformations, arXiv:2403.08531 [hep-th], 2024.
These are the row-sums of the right (or left) half of
A064391, inclusive.
These partitions are ranked by
A352873.
A034008 counts even-length compositions.
A224958 counts compositions w/ alternating parts unequal (even:
A342532).
A257989 gives the crank of the partition with Heinz number n.
A342527 counts compositions w/ alternating parts equal (even:
A065608).
A342528 = compositions w/ alternating parts weakly decr. (even:
A114921).
-
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) , {k, 0, (Sqrt[1 + 8 n] - 1)/2}] / QPochhammer[ x], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k (k + 1)) / QPochhammer[ x, x, k]^2 , {k, 0, (Sqrt[1 + 4 n] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
ck[y_]:=With[{w=Count[y,1]},If[w==0,If[y=={},0,Max@@y],Count[y,?(#>w&)]-w]];Table[Length[Select[IntegerPartitions[n],ck[#]>=0&]],{n,0,30}] (* _Gus Wiseman, Mar 30 2021 *)
ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ@*Length],ici]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
-
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) -1)\2, (-1)^k * x^((k+k^2)/2)) / eta( x + x * O(x^n)), n))}; /* Michael Somos, Jul 28 2003 */
A188674
Stack polyominoes with square core.
Original entry on oeis.org
1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352833 counts partitions by fixed points.
-
a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
(* second program *)
pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
A352828
Number of strict integer partitions y of n with no fixed points y(i) = i.
Original entry on oeis.org
1, 0, 1, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 26, 32, 38, 46, 56, 66, 78, 92, 106, 123, 142, 162, 186, 214, 244, 280, 322, 368, 422, 484, 552, 630, 718, 815, 924, 1046, 1180, 1330, 1498, 1682, 1888, 2118, 2372, 2656, 2972, 3322, 3712, 4146, 4626
Offset: 0
The a(0) = 1 through a(12) = 12 partitions (A-C = 10..12; empty column indicated by dot; 0 is the empty partition):
0 . 2 3 4 5 6 7 8 9 A B C
21 31 41 51 43 53 54 64 65 75
61 71 63 73 74 84
431 81 91 83 93
432 532 A1 B1
531 541 542 642
631 632 651
4321 641 732
731 741
5321 831
5421
6321
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A352833 counts partitions by fixed points.
Cf.
A008292,
A064410,
A111133,
A114088,
A118199,
A188674,
A257990,
A352824,
A352825,
A352830,
A352872.
-
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]==0&]],{n,0,30}]
A352829
Number of strict integer partitions y of n with a fixed point y(i) = i.
Original entry on oeis.org
0, 1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 30, 36, 42, 50, 60, 70, 82, 96, 110, 126, 144, 163, 184, 208, 234, 264, 298, 336, 380, 430, 486, 550, 622, 702, 792, 892, 1002, 1125, 1260, 1408, 1572, 1752, 1950, 2168, 2408, 2672
Offset: 0
The a(11) = 2 through a(17) = 12 partitions (A-F = 10..15):
(92) (A2) (B2) (C2) (D2) (E2) (F2)
(821) (543) (643) (653) (753) (763) (863)
(921) (A21) (743) (843) (853) (953)
(5431) (B21) (C21) (943) (A43)
(5432) (6432) (D21) (E21)
(6431) (6531) (6532) (7532)
(7431) (7432) (7631)
(54321) (7531) (8432)
(8431) (8531)
(64321) (9431)
(65321)
(74321)
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A352833 counts partitions by fixed points.
Cf.
A008292,
A064410,
A111133,
A114088,
A118199,
A188674,
A257990,
A352823,
A352824,
A352825,
A352832.
-
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]>0&]],{n,0,30}]
A118199
Number of partitions of n having no parts equal to the size of their Durfee squares.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 40, 53, 68, 89, 113, 146, 184, 234, 293, 369, 458, 572, 706, 874, 1073, 1320, 1611, 1970, 2393, 2909, 3518, 4255, 5122, 6167, 7394, 8862, 10585, 12637, 15038, 17886, 21213, 25141, 29723, 35112, 41383, 48737, 57278
Offset: 0
a(7) = 3 because we have [7] with size of Durfee square 1, [4,3] with size of Durfee square 2 and [3,3,1] with size of Durfee square 2.
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352833 counts partitions by fixed points.
-
g:=1+sum(x^(k^2+k)/(1-x^k)/product((1-x^i)^2,i=1..k-1),k=1..20): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=0..54);
# second Maple program::
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(add(b(k, d) *b(n-d*(d+1)-k, d-1),
k=0..n-d*(d+1)), d=0..floor(sqrt(n))):
seq(a(n), n=0..70); # Alois P. Heinz, Apr 09 2012
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[Sum[b[k, d]*b[n-d*(d+1)-k, d-1], {k, 0, n-d*(d+1)}], {d, 0, Floor[Sqrt[n]]}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],pq[#]>0&&pq[conj[#]]==0&]],{n,0,30}] (* a(0) = 0, Gus Wiseman, May 21 2022 *)
A352874
Heinz numbers of integer partitions with positive crank, counted by A001522.
Original entry on oeis.org
3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 103, 105, 107, 109
Offset: 1
The terms together with their prime indices begin:
3: (2) 30: (3,2,1) 54: (2,2,2,1)
5: (3) 31: (11) 55: (5,3)
7: (4) 33: (5,2) 57: (8,2)
9: (2,2) 35: (4,3) 59: (17)
11: (5) 37: (12) 61: (18)
13: (6) 39: (6,2) 63: (4,2,2)
15: (3,2) 41: (13) 65: (6,3)
17: (7) 42: (4,2,1) 66: (5,2,1)
18: (2,2,1) 43: (14) 67: (19)
19: (8) 45: (3,2,2) 69: (9,2)
21: (4,2) 47: (15) 70: (4,3,1)
23: (9) 49: (4,4) 71: (20)
25: (3,3) 50: (3,3,1) 73: (21)
27: (2,2,2) 51: (7,2) 75: (3,3,2)
29: (10) 53: (16) 77: (5,4)
* = unproved
These partitions are counted by
A001522.
A122111 represents partition conjugation using Heinz numbers.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
Cf.
A065770,
A093641,
A118199,
A188674,
A252464,
A257990,
A325163,
A325169,
A344609,
A352828,
A352831.
-
ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
Select[Range[100],ck[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]>0&]
A353316
Heinz numbers of integer partitions that have a fixed point but whose conjugate does not (counted by A118199).
Original entry on oeis.org
4, 8, 16, 27, 32, 45, 54, 63, 64, 81, 90, 99, 108, 117, 126, 128, 135, 153, 162, 171, 180, 189, 198, 207, 216, 234, 243, 252, 256, 261, 270, 279, 297, 306, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 459, 468, 477, 486, 504, 512, 513, 522
Offset: 1
The terms together with their prime indices begin:
4: (1,1)
8: (1,1,1)
16: (1,1,1,1)
27: (2,2,2)
32: (1,1,1,1,1)
45: (3,2,2)
54: (2,2,2,1)
63: (4,2,2)
64: (1,1,1,1,1,1)
81: (2,2,2,2)
90: (3,2,2,1)
99: (5,2,2)
108: (2,2,2,1,1)
117: (6,2,2)
126: (4,2,2,1)
128: (1,1,1,1,1,1,1)
For example, the partition (3,2,2,1) with Heinz number 90 has a fixed point at the second position, but its conjugate (4,3,1) has no fixed points, so 90 is in the sequence.
These partitions are counted by
A118199.
A122111 represents partition conjugation using Heinz numbers.
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352826 ranks partitions w/o a fixed point, counted by
A064428 (unproved).
A352827 ranks partitions with a fixed point, counted by
A001522 (unproved).
Cf.
A001222,
A065770,
A093641,
A114088,
A188674,
A252464,
A300788,
A325163,
A325169,
A352831,
A352828,
A352829.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]==0&]
A353317
Heinz numbers of integer partitions that have a fixed point and a conjugate fixed point (counted by A188674).
Original entry on oeis.org
2, 9, 15, 18, 21, 30, 33, 36, 39, 42, 51, 57, 60, 66, 69, 72, 78, 84, 87, 93, 102, 111, 114, 120, 123, 125, 129, 132, 138, 141, 144, 156, 159, 168, 174, 175, 177, 183, 186, 201, 204, 213, 219, 222, 228, 237, 240, 245, 246, 249, 250, 258, 264, 267, 275, 276
Offset: 1
The terms and their prime indices begin:
2: (1)
9: (2,2)
15: (3,2)
18: (2,2,1)
21: (4,2)
30: (3,2,1)
33: (5,2)
36: (2,2,1,1)
39: (6,2)
42: (4,2,1)
51: (7,2)
57: (8,2)
60: (3,2,1,1)
66: (5,2,1)
69: (9,2)
72: (2,2,1,1,1)
78: (6,2,1)
84: (4,2,1,1)
For example, the partition (2,2,1,1) with Heinz number 36 has a fixed point at the second position, as does its conjugate (4,2), so 36 is in the sequence.
These partitions are counted by
A188674.
Fixed point but no conjugate fixed point:
A353316, counted by
A118199.
A122111 represents partition conjugation using Heinz numbers.
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
A352826 ranks partitions w/o a fixed point, counted by
A064428 (unproved).
A352827 ranks partitions with a fixed point, counted by
A001522 (unproved).
Cf.
A001222,
A065770,
A093641,
A252464,
A325039,
A325163,
A325169,
A352828,
A352831,
A352832,
A352833.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]>0&]
Showing 1-9 of 9 results.
Comments