cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353328 Number of divisors d of n for which A332823(d) is positive (+1).

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, 3, 1, 2, 1, 2, 1, 3, 0, 1, 1, 3, 1, 2, 0, 2, 2, 2, 1, 3, 1, 2, 1, 2, 0, 3, 2, 2, 1, 1, 1, 4, 0, 2, 2, 2, 1, 3, 1, 2, 1, 3, 0, 4, 1, 1, 2, 2, 1, 2, 0, 4, 1, 2, 1, 4, 2, 1, 1, 3, 0, 4, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 0, 3, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Apr 16 2022

Keywords

Comments

Number of divisors of n such that A048673(d) == +1 (mod 3).

Crossrefs

Cf. A353355 [a(n) == A353329(n)], A353356 [a(n) > A353329(n)], A353357 [a(n) < A353329(n)].

Programs

  • PARI
    A332823(n) = { my(f = factor(n),u=(sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3); if(2==u,-1,u); };
    A353328(n) = sumdiv(n,d,(A332823(d)>0));

Formula

a(n) = Sum_{d|n} [A332823(d) > 0], where [ ] is the Iverson bracket, giving 1 only if A332823 computed for the divisor d is strictly positive, and 0 otherwise.
a(n) = A353354(n) + A353329(n).
a(n) = A353351(n) - A353329(n).
a(n) = A353329(A003961(n)).