cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353332 Number of divisors d of n for which both A001222(d) and A056239(d) are even.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 1, 2, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3, 1, 2, 3, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 1, 2, 2, 1, 2, 1, 5, 3, 2, 1, 4, 2, 1, 2, 4, 1, 4, 2, 3, 1, 2, 1, 3, 1, 2, 2, 5, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2022

Keywords

Comments

Number of terms of A340784 that divide n.

Examples

			Of the 9 divisors of 36, only divisors 1, 4, 9 and 36 satisfy the condition, therefore a(36) = 4.
		

Crossrefs

Inverse Möbius transform of A353331. Cf. also A353333, A353334.
Differs from A353362 for the first time at n=30, where a(30) = 2, while A353362(30) = 3.

Programs

  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    A353332(n) = sumdiv(n,d,A353331(d));

Formula

a(n) = Sum_{d|n} A353331(d).
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.