A353333 Number of ways to write n as a product of the terms of A340784 larger than 1; a(1) = 1 by convention (an empty product).
1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
Of the eleven divisors of 220 larger than one, only [4, 10, 22, 55, 220] are in A340784, as both the number of their prime factors (with repetition, A001222), [2, 2, 2, 2, 4], and their integer pseudo logarithms (A056239), [2, 4, 6, 8, 10], are even. Using these factors gives the following possible factorizations: 220 = 22*10 = 55*4, therefore a(220) = 3. Of the eight divisors of 256 larger than one, only [1, 4, 16, 64, 256] are in A340784. Using these factors, we obtain the following factorizations: 256 = 64*4 = 16*16 = 16*4*4 = 4*4*4*4, therefore a(256) = 5. Of the 23 divisors of 792 larger than one, only [4, 9, 22, 36, 88, 198, 792] are in A340784. Using these factors gives the following possible factorizations: 792 = 198*4 = 88*9 = 36*22 = 22*4*9, therefore a(792) = 5.
Comments