A353348 Dirichlet inverse of A353350, where A353350 is the characteristic function for numbers k such that A048675(k) is a multiple of 3.
1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, -1, 0, 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, 0, -1, -1, 0, -1, 0, 0
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := e*2^(PrimePi[p] - 1); s[1] = 1; s[n_] := Boole @ Divisible[Plus @@ f @@@ FactorInteger[n], 3]; a[1] = 1; a[n_] := -DivisorSum[n, a[#]*s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Apr 15 2022 *)
-
PARI
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A353350(n) = (0==(A048675(n)%3)); v353348 = DirInverseCorrect(vector(up_to,n,A353350(n))); A353348(n) = v353348[n]; -
PARI
\\ Memoized variant, with no fixed limit for how many terms: memoA353348 = Map(); A353348(n) = if(1==n,1,my(v); if(mapisdefined(memoA353348,n,&v), v, v = -sumdiv(n,d,if(d
A353350(n/d)*A353348(d),0)); mapput(memoA353348,n,v); (v))); \\ Antti Karttunen, Jan 17 2023
Formula
Extensions
Second offset added by Antti Karttunen, Jan 17 2023
Comments