A353349 Sum of A353350 and its Dirichlet inverse.
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Links
Programs
-
Mathematica
f[p_, e_] := e*2^(PrimePi[p] - 1); s[1] = 1; s[n_] := Boole@Divisible[Plus @@ f @@@ FactorInteger[n], 3]; sinv[1] = 1; sinv[n_] := -DivisorSum[n, sinv[#]*s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Apr 15 2022 *)
-
PARI
up_to = 16384; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A353350(n) = (0==(A048675(n)%3)); v353348 = DirInverseCorrect(vector(up_to,n,A353350(n))); A353348(n) = v353348[n]; A353349(n) = (A353348(n)+A353350(n));
Comments