cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353373 Number of ways to write n as a product of the terms of A325698 larger than 1; a(1) = 1 by convention (an empty product).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 16 2022

Keywords

Comments

Number of factorizations of n into factors k > 1 for which there are equal number of odd-indexed primes (A031368) as there are even-indexed primes (A031215) in their prime factorization.

Examples

			Of the 23 divisors of 936 larger than 1, only [6, 26, 36, 156, 936] are in A325698. These can be combined to yield a product yielding 936 in four possible ways as 936 = 156*6 = 36*26 = 26*6*6, therefore a(936) = 4.
Of the 31 divisors of 2184 larger than 1, only [6, 14, 26, 84, 156, 364, 2184] are in A325698. These can be combined to yield a product yielding 2184 in five possible ways as 2184 = 364*6 = 156*14 = 84*26, therefore a(2184) = 5.
		

Crossrefs

Programs

  • PARI
    A353370(n) = { my(f = factor(n)); (0==sum(i=1, #f~, f[i,2]*((-1)^(primepi(f[i, 1])%2)))); }; \\ Antti Karttunen, Apr 16 2022
    A353373(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&A353370(d), s += A353373(n/d, d))); (s));

Formula

a(p) = 0 for all primes p.
a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.