A353385 Irregular triangle T(n,k) with row n listing A051037(j) not divisible by 60 such that A352219(j) = n.
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 8, 9, 16, 18, 24, 25, 36, 40, 45, 48, 50, 72, 75, 80, 90, 100, 144, 150, 200, 225, 400, 450, 27, 32, 54, 64, 96, 108, 125, 135, 160, 192, 216, 250, 270, 288, 320, 375, 432, 500, 576, 675, 750, 800, 864, 1000, 1125, 1350, 1600
Offset: 0
Examples
For row w, plot terms m = 2^x * 3^y * 5^z at (x,y,z). Rows are labeled below the figures parenthetically for clarity. The x axis points toward the bottom right, the y axis to the bottom left, and the z axis upward. In the plot, we mark terms from previous rows by ".", and use "*" to show the origin, that is, the empty product 1: 125 375 250 1125 750 500 3375 2250 1000 6750 2000 25 . 4000 75 50 . . 8000 225 150 100 . . . 450 200 675 . . 400 1350 . 5 . . 800 15 10 . . . . 1600 30 20 45 . . . . . 90 40 135 . . 80 270 . 1 * * * 160 3 2 . . . . 320 6 4 9 . . . . . 12 18 . 8 27 . . . 36 24 16 54 . . . 72 48 108 . . 32 144 216 . 96 64 432 288 192 864 432 1728 (0) (1) (2) (3) The terms in row w are sorted, hence row 1 has {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10250 (rows n = 1..40, flattened)
- Eric Weisstein's World of Mathematics, Sexagesimal
- Wikipedia, Regular number.
Programs
-
Mathematica
Block[{t, s = DeleteCases[Sort[Flatten[Table[{2^a* 3^b * 5^c, Max[Ceiling[a/2], b, c]}, {a, 0, Log2[#]}, {b, 0, Log[3, #/(2^a)]}, {c, 0, Log[5, #/(2^a*3^b)]}], 2]] &[60^3], _?(Mod[First[#], 60] == 0 &)]}, #[[1 ;; 2 + LengthWhile[Rest@ Differences[Length /@ #], # == 12 &]]] &@ Map[s[[#, 1]] &, Values@ PositionIndex[s[[All, -1]]]]] // Flatten
Formula
Row 0 contains the empty product, thus row length = 1.
For n > 0, length of row n = 12(n-1) + 10 = A017641(n-1).
Comments