cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353388 Numbers k such that 2*k^2 + 29 is neither a prime nor a semiprime.

Original entry on oeis.org

185, 187, 232, 247, 261, 309, 311, 370, 371, 373, 435, 442, 464, 479, 501, 516, 520, 553, 557, 561, 590, 614, 619, 620, 621, 627, 638, 667, 701, 702, 705, 708, 714, 738, 755, 769, 796, 797, 802, 812, 836, 849, 853, 856, 869, 874, 890, 896, 899, 903, 906, 915, 943, 957, 960, 964, 973, 990
Offset: 1

Views

Author

Hugo Pfoertner, Apr 16 2022

Keywords

Comments

If k is a term, then so is k + j*(2*k^2+29) for all natural numbers j. - Robert Israel, Jul 23 2023

Crossrefs

Programs

  • Maple
    select(k -> numtheory:-bigomega(2*k^2+29) > 2, [$1..1000]); # Robert Israel, Jul 23 2023
  • Mathematica
    Select[Range[1000], PrimeOmega[2*#^2 + 29] >= 3 &] (* Amiram Eldar, Apr 17 2022 *)
  • PARI
    for(k=0,1000,if(bigomega(2*k^2+29) >= 3,print1(k,", ")))
    
  • Python
    from sympy import primeomega
    def ok(n): return primeomega(2*n**2 + 29) >= 3
    print([k for k in range(1000) if ok(k)]) # Michael S. Branicky, Apr 16 2022