cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353397 Replace prime(k) with prime(2^k) in the prime factorization of n.

Original entry on oeis.org

1, 3, 7, 9, 19, 21, 53, 27, 49, 57, 131, 63, 311, 159, 133, 81, 719, 147, 1619, 171, 371, 393, 3671, 189, 361, 933, 343, 477, 8161, 399, 17863, 243, 917, 2157, 1007, 441, 38873, 4857, 2177, 513, 84017, 1113, 180503, 1179, 931, 11013, 386093, 567, 2809, 1083
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Examples

			The terms together with their prime indices begin:
      1: {}
      3: {2}
      7: {4}
      9: {2,2}
     19: {8}
     21: {2,4}
     53: {16}
     27: {2,2,2}
     49: {4,4}
     57: {2,8}
    131: {32}
     63: {2,2,4}
		

Crossrefs

These are the positions of first appearances in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A033844 lists primes indexed by powers of 2.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A181819 gives prime shadow, firsts A181821, relatively prime A325131.
Equivalent sequence with prime(2*k) instead of prime(2^k): A297002.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@(2^primeMS[n]),{n,100}]
  • PARI
    a(n) = my(f=factor(n)); for(k=1, #f~, f[k,1] = prime(2^primepi(f[k,1]))); factorback(f); \\ Michel Marcus, May 20 2022
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A353397(n): return prod(prime(2**primepi(p))**e for p, e in factorint(n).items()) # Chai Wah Wu, May 20 2022

Formula

If n = prime(e_1)...prime(e_k), then a(n) = prime(2^(e_1))...prime(2^(e_k)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2^k)) = 1.90812936178871496289... . - Amiram Eldar, Dec 09 2022