A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices.
1, 2, 12, 20, 36, 44, 56, 68, 100, 124, 164, 184, 208, 236, 240, 268, 332, 436, 464, 484, 508, 528, 608, 628, 688, 716, 720, 752, 764, 776, 816, 844, 880, 964, 1108, 1132, 1156, 1168, 1200, 1264, 1296, 1324, 1344, 1360, 1412, 1468, 1488, 1584, 1604, 1616, 1724
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 12: {1,1,2} 20: {1,1,3} 36: {1,1,2,2} 44: {1,1,5} 56: {1,1,1,4} 68: {1,1,7} 100: {1,1,3,3} 124: {1,1,11} 164: {1,1,13} 184: {1,1,1,9} 208: {1,1,1,1,6} 236: {1,1,17} 240: {1,1,1,1,2,3}
Crossrefs
The partitions are counted by A353398.
Taking indices instead of exponents on the LHS gives A353503.
A325131 lists numbers relatively prime to their prime shadow.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393
- recursive version counted by A353426
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; Select[Range[100],Times@@red/@primeMS[#]==Times@@Last/@FactorInteger[#]&]
Comments