cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353412 The odd part of hybrid shift: a(n) = A000265(A252463(n)).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 1, 1, 5, 7, 3, 11, 7, 3, 1, 13, 9, 17, 5, 5, 11, 19, 3, 9, 13, 1, 7, 23, 15, 29, 1, 7, 17, 15, 9, 31, 19, 11, 5, 37, 21, 41, 11, 3, 23, 43, 3, 25, 25, 13, 13, 47, 27, 21, 7, 17, 29, 53, 15, 59, 31, 5, 1, 33, 33, 61, 17, 19, 35, 67, 9, 71, 37, 9, 19, 35, 39, 73, 5, 1, 41, 79, 21, 39, 43, 23, 11
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2022

Keywords

Crossrefs

Cf. A000265 (even bisection), A353413 (odd bisection).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A353412(n) = A000265(A252463(n));
    
  • Python
    from math import prod
    from sympy import factorint, prevprime
    def A353412(n): return int(bin(prod(1 if p == 2 else prevprime(p)*e for p, e in factorint(n).items()) if n % 2 else n//2)[2:].rstrip('0'),2) # Chai Wah Wu, Apr 18 2022

Formula

a(n) = A000265(A252463(n)).
a(2*n) = A000265(n), a(2*n-1) = A353413(n) = A000265(A064216(n)).
For all n >= 1, A000005(a(n)) = A320107(n).