cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353426 Number of integer partitions of n that are empty or a singleton or whose multiplicities are a sub-multiset that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 3, 5, 4, 6, 5, 6, 6, 7, 8, 10, 12, 12, 14, 13, 13, 18, 15, 16, 19, 20, 20, 32, 37, 53, 74, 105
Offset: 0

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

a(n) is number of integer partitions of n whose Heinz number belongs to A353393, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(n) partitions for selected n (A..M = 10..22):
  n=1: n=4:  n=14:     n=16:     n=17:     n=18:        n=22:
------------------------------------------------------------------
  (1)  (4)   (E)       (G)       (H)       (I)          (M)
       (22)  (5522)    (4444)    (652211)  (7722)       (9922)
             (532211)  (6622)    (742211)  (752211)     (972211)
                       (642211)  (832211)  (842211)     (A62211)
                       (732211)            (932211)     (B52211)
                                           (333222111)  (C42211)
                                                        (D32211)
		

Crossrefs

The non-recursive version is A325702, ranked by A325755.
The version for compositions is A353391, non-recursive A353390.
These partitions are ranked by A353393, nonprime A353389.
A047966 counts uniform partitions, compositions A329738.
A239455 counts Look-and-Say partitions, ranked by A351294.

Programs

  • Mathematica
    oosQ[y_]:=Length[y]<=1||MemberQ[Subsets[Sort[y],{Length[Union[y]]}],Sort[Length/@Split[y]]]&&oosQ[Sort[Length/@Split[y]]];
    Table[Length[Select[IntegerPartitions[n],oosQ]],{n,0,30}]