cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A353393 Positive integers m > 1 that are prime or whose prime shadow A181819(m) is a divisor of m that is already in the sequence.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, 36, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 225, 227, 229, 233, 239, 241, 251
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   29: {10}
   31: {11}
   36: {1,1,2,2}
		

Crossrefs

The first term that is not a prime power A000961 is 36.
The first term that is not a prime or a perfect power A001597 is 1260. - Corrected by Robert Israel, Mar 10 2025
The non-recursive version is A325755, counted by A325702.
Removing all primes gives A353389.
These partitions are counted by A353426.
The version for compositions is A353431.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with all distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.

Programs

  • Maple
    pshadow:= proc(n) local F,i;
      F:= ifactors(n)[2];
      mul(ithprime(i),i=F[..,2])
    end proc:
    filter:= proc(n) local s;
      if isprime(n) then return true fi;
      s:= pshadow(n);
      n mod s = 0 and member(s,R)
    end proc:
    R:= {}:
    for i from 2 to 2000 do if filter(i) then R:= R union {i} fi od:
    sort(convert(R,list)); # Robert Israel, Mar 10 2025
  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]];
    Select[Range[2,200],suQ[#]&]

Formula

Equals A353389 U A000040.

A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices.

Original entry on oeis.org

1, 2, 12, 20, 36, 44, 56, 68, 100, 124, 164, 184, 208, 236, 240, 268, 332, 436, 464, 484, 508, 528, 608, 628, 688, 716, 720, 752, 764, 776, 816, 844, 880, 964, 1108, 1132, 1156, 1168, 1200, 1264, 1296, 1324, 1344, 1360, 1412, 1468, 1488, 1584, 1604, 1616, 1724
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    12: {1,1,2}
    20: {1,1,3}
    36: {1,1,2,2}
    44: {1,1,5}
    56: {1,1,1,4}
    68: {1,1,7}
   100: {1,1,3,3}
   124: {1,1,11}
   164: {1,1,13}
   184: {1,1,1,9}
   208: {1,1,1,1,6}
   236: {1,1,17}
   240: {1,1,1,1,2,3}
		

Crossrefs

Product of prime indices is A003963, counted by A339095.
The LHS (product of exponents) is A005361, counted by A266477.
The RHS (product of shadows) is A353394, first appearances A353397.
A related comparison is A353395, counted by A353396.
The partitions are counted by A353398.
Taking indices instead of exponents on the LHS gives A353503.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393
- recursive version counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==Times@@Last/@FactorInteger[#]&]

Formula

A005361(a(n)) = A353394(a(n)).

A353390 Number of compositions of n whose own run-lengths are a subsequence (not necessarily consecutive).

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 2, 2, 8, 17, 26, 43, 77, 129, 210, 351, 569
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(9) = 8 compositions (empty columns indicated by dots):
  ()  (1)  .  .  (22)  (122)  (1122)  (11221)  (21122)  (333)
                       (221)  (1221)  (12211)  (22112)  (22113)
                              (2211)                    (22122)
                                                        (31122)
                                                        (121122)
                                                        (122112)
                                                        (211221)
                                                        (221121)
For example, the composition y = (2,2,3,3,1) has run-lengths (2,2,1), which form a (non-consecutive) subsequence, so y is counted under a(11).
		

Crossrefs

The version for partitions is A325702.
The recursive version is A353391, ranked by A353431.
The consecutive case is A353392, ranked by A353432.
These compositions are ranked by A353402.
The reverse version is A353403.
The recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A047966 counts uniform partitions, compositions A329738.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.
A353400 counts compositions with all run-lengths > 2.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], MemberQ[Subsets[#],Length/@Split[#]]&]],{n,0,15}]

A353391 Number of compositions of n that are empty, a singleton, or whose run-lengths are a subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 22, 38, 45, 87, 93
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(9) = 4 through a(14) = 15 compositions (A..E = 10..14):
  (9)       (A)       (B)       (C)       (D)       (E)
  (333)     (2233)    (141122)  (2244)    (161122)  (2255)
  (121122)  (3322)    (221123)  (4422)    (221125)  (5522)
  (221121)  (131122)  (221132)  (151122)  (221134)  (171122)
            (221131)  (221141)  (221124)  (221143)  (221126)
                      (231122)  (221142)  (221152)  (221135)
                      (321122)  (221151)  (221161)  (221153)
                                (241122)  (251122)  (221162)
                                (421122)  (341122)  (221171)
                                          (431122)  (261122)
                                          (521122)  (351122)
                                                    (531122)
                                                    (621122)
                                                    (122121122)
                                                    (221121221)
		

Crossrefs

The non-recursive version is A353390, ranked by A353402.
The non-recursive consecutive version is A353392, ranked by A353432.
The non-recursive reverse version is A353403.
The unordered version is A353426, ranked by A353393 (nonprime A353389).
The consecutive version is A353430.
These compositions are ranked by A353431.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A329738 counts uniform compositions, partitions A047966.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-length.

Programs

  • Mathematica
    yosQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&&yosQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yosQ]],{n,0,15}]

A353389 Create the sequence of all positive integers > 1 that are prime or whose prime shadow (A181819) is a divisor that is already in the sequence. Then remove all the primes.

Original entry on oeis.org

9, 36, 125, 225, 441, 1089, 1260, 1521, 1980, 2340, 2401, 2601, 2772, 3060, 3249, 3276, 3420, 4140, 4284, 4761, 4788, 5148, 5220, 5580, 5796, 6660, 6732, 7308, 7380, 7524, 7569, 7740, 7812, 7956, 8460, 8649, 8892, 9108, 9324, 9540, 10332, 10620, 10764, 10836
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
Said differently, these are nonprime numbers > 1 whose prime shadow is a divisor that is either a prime number or a number already in the sequence.

Examples

			The initial terms and their prime indices:
     9: {2,2}
    36: {1,1,2,2}
   125: {3,3,3}
   225: {2,2,3,3}
   441: {2,2,4,4}
  1089: {2,2,5,5}
  1260: {1,1,2,2,3,4}
  1521: {2,2,6,6}
  1980: {1,1,2,2,3,5}
		

Crossrefs

The first term that is not a perfect power A001597 is 1260.
Without the recursion we have A325755 (a superset), counted by A325702.
Before removing the primes we had A353393.
These partitions are counted by A353426 minus one.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A182850 and A323014 give frequency depth, counted by A225485 and A325280.
A325131 lists numbers relatively prime to their prime shadow.

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]];
    Select[Range[2,2000],suQ[#]&&!PrimeQ[#]&]

A353398 Number of integer partitions of n where the product of multiplicities equals the product of prime shadows of the parts.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 1, 2, 6, 5, 4, 4, 6, 6, 8, 8, 13, 16, 13, 16, 18, 16, 20, 21, 27, 30, 27, 33, 41, 44, 51, 48, 58, 61, 66, 66, 74, 83, 86, 99, 102, 111, 115, 126, 137, 147, 156
Offset: 0

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The a(8) = 1 through a(14) = 4 partitions (A = 10, B = 11):
  3311  711     61111  521111   5511      B11       A1111
        321111         3221111  9111      721111    731111
                                531111    811111    33221111
                                3321111   5221111   422111111
                                22221111  43111111
                                42111111
		

Crossrefs

The LHS (product of multiplicities) is A005361, counted by A266477.
The RHS (product of prime shadows) is A353394, first appearances A353397.
A related comparison is A353396, ranked by A353395.
These partitions are ranked by A353399.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow, counted by A325702.
A339095 counts partitions by product (or factorizations by sum).

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Length[Select[IntegerPartitions[n],Times@@red/@#==Times@@Length/@Split[#]&]],{n,0,30}]

A353403 Number of compositions of n whose own reversed run-lengths are a subsequence (not necessarily consecutive).

Original entry on oeis.org

1, 1, 0, 0, 3, 2, 5, 12, 16, 30, 45, 94, 159, 285, 477, 864, 1487, 2643
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(7) = 12 compositions:
  ()  (1)  .  .  (22)   (1121)  (1113)  (1123)
                 (112)  (1211)  (1122)  (1132)
                 (211)          (1221)  (2311)
                                (2211)  (3211)
                                (3111)  (11131)
                                        (11212)
                                        (11221)
                                        (12112)
                                        (12211)
                                        (13111)
                                        (21121)
                                        (21211)
		

Crossrefs

The non-reversed version is A353390, ranked by A353402, partitions A325702.
The non-reversed recursive version is A353391, ranked by A353431.
The non-reversed consecutive case is A353392, ranked by A353432.
The non-reversed recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],MemberQ[Subsets[#],Reverse[Length/@Split[#]]]&]],{n,0,15}]

A353431 Numbers k such that the k-th composition in standard order is empty, a singleton, or has its own run-lengths as a subsequence (not necessarily consecutive) that is already counted.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 16, 32, 43, 58, 64, 128, 256, 292, 349, 442, 512, 586, 676, 697, 826, 1024, 1210, 1338, 1393, 1394, 1396, 1594, 2048, 2186, 2234, 2618, 2696, 2785, 2786, 2792, 3130, 4096, 4282, 4410, 4666, 5178, 5569, 5570, 5572, 5576, 5584, 6202, 8192
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

First differs from A353696 (the consecutive version) in having 22318, corresponding to the binary word 101011100101110 and standard composition (2,2,1,1,3,2,1,1,2), whose run-lengths (2,2,1,1,2,1) are subsequence but not a consecutive subsequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
     0:           0  ()
     1:           1  (1)
     2:          10  (2)
     4:         100  (3)
     8:        1000  (4)
    10:        1010  (2,2)
    16:       10000  (5)
    32:      100000  (6)
    43:      101011  (2,2,1,1)
    58:      111010  (1,1,2,2)
    64:     1000000  (7)
   128:    10000000  (8)
   256:   100000000  (9)
   292:   100100100  (3,3,3)
   349:   101011101  (2,2,1,1,2,1)
   442:   110111010  (1,2,1,1,2,2)
   512:  1000000000  (10)
   586:  1001001010  (3,3,2,2)
   676:  1010100100  (2,2,3,3)
   697:  1010111001  (2,2,1,1,3,1)
		

Crossrefs

The non-recursive version for partitions is A325755, counted by A325702.
These compositions are counted by A353391.
The version for partitions A353393, counted by A353426, w/o primes A353389.
The non-recursive version is A353402, counted by A353390.
The non-recursive consecutive case is A353432, counted by A353392.
The consecutive case is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, multisets A225620, strict A333255, sets A333256.
- Constant compositions are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rorQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&& rorQ[Length/@Split[y]];
    Select[Range[0,100],rorQ[stc[#]]&]

A353430 Number of integer compositions of n that are empty, a singleton, or whose own run-lengths are a consecutive subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 16, 22, 25, 37, 37, 45
Offset: 0

Views

Author

Gus Wiseman, May 16 2022

Keywords

Examples

			The a(n) compositions for selected n (A..E = 10..14):
  n=4:  n=6:    n=9:      n=10:     n=12:     n=14:
-----------------------------------------------------------
  (4)   (6)     (9)       (A)       (C)       (E)
  (22)  (1122)  (333)     (2233)    (2244)    (2255)
        (2211)  (121122)  (3322)    (4422)    (5522)
                (221121)  (131122)  (151122)  (171122)
                          (221131)  (221124)  (221126)
                                    (221142)  (221135)
                                    (221151)  (221153)
                                    (241122)  (221162)
                                    (421122)  (221171)
                                              (261122)
                                              (351122)
                                              (531122)
                                              (621122)
                                              (122121122)
                                              (221121221)
		

Crossrefs

Non-recursive non-consecutive version: counted by A353390, ranked by A353402, reverse A353403, partitions A325702.
Non-consecutive version: A353391, ranked by A353431, partitions A353426.
Non-recursive version: A353392, ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Mathematica
    yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]&&yoyQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yoyQ]],{n,0,15}]

A353395 Numbers k such that the prime shadow of k equals the product of prime shadows of the prime indices of k.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 26, 31, 33, 41, 51, 55, 58, 59, 67, 78, 83, 85, 86, 93, 94, 109, 123, 126, 127, 130, 146, 148, 155, 157, 158, 165, 174, 177, 179, 187, 191, 196, 201, 202, 205, 211, 241, 244, 249, 255, 258, 274, 277, 278, 282, 283, 284, 286, 290, 295, 298
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
      1: {}         78: {1,2,6}      158: {1,22}
      3: {2}        83: {23}         165: {2,3,5}
      5: {3}        85: {3,7}        174: {1,2,10}
     11: {5}        86: {1,14}       177: {2,17}
     15: {2,3}      93: {2,11}       179: {41}
     17: {7}        94: {1,15}       187: {5,7}
     26: {1,6}     109: {29}         191: {43}
     31: {11}      123: {2,13}       196: {1,1,4,4}
     33: {2,5}     126: {1,2,2,4}    201: {2,19}
     41: {13}      127: {31}         202: {1,26}
     51: {2,7}     130: {1,3,6}      205: {3,13}
     55: {3,5}     146: {1,21}       211: {47}
     58: {1,10}    148: {1,1,12}     241: {53}
     59: {17}      155: {3,11}       244: {1,1,18}
     67: {19}      157: {37}         249: {2,23}
For example, 126 is in the sequence because its prime indices {1,2,2,4} have shadows {1,2,2,3}, with product 12, which is also the prime shadow of 126.
		

Crossrefs

The prime terms are A006450.
The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of shadows) is A353394, first appearances A353397.
This is a ranking of the partitions counted by A353396.
Another related comparison is A353399, counted by A353398.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A324850 lists numbers divisible by the product of their prime indices.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393, counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==red[#]&]

Formula

A181819(a(n)) = A353394(a(n)) = Product_i A181819(A112798(a(n),i)).
Showing 1-10 of 12 results. Next