cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A353426 Number of integer partitions of n that are empty or a singleton or whose multiplicities are a sub-multiset that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 3, 3, 5, 4, 6, 5, 6, 6, 7, 8, 10, 12, 12, 14, 13, 13, 18, 15, 16, 19, 20, 20, 32, 37, 53, 74, 105
Offset: 0

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

a(n) is number of integer partitions of n whose Heinz number belongs to A353393, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(n) partitions for selected n (A..M = 10..22):
  n=1: n=4:  n=14:     n=16:     n=17:     n=18:        n=22:
------------------------------------------------------------------
  (1)  (4)   (E)       (G)       (H)       (I)          (M)
       (22)  (5522)    (4444)    (652211)  (7722)       (9922)
             (532211)  (6622)    (742211)  (752211)     (972211)
                       (642211)  (832211)  (842211)     (A62211)
                       (732211)            (932211)     (B52211)
                                           (333222111)  (C42211)
                                                        (D32211)
		

Crossrefs

The non-recursive version is A325702, ranked by A325755.
The version for compositions is A353391, non-recursive A353390.
These partitions are ranked by A353393, nonprime A353389.
A047966 counts uniform partitions, compositions A329738.
A239455 counts Look-and-Say partitions, ranked by A351294.

Programs

  • Mathematica
    oosQ[y_]:=Length[y]<=1||MemberQ[Subsets[Sort[y],{Length[Union[y]]}],Sort[Length/@Split[y]]]&&oosQ[Sort[Length/@Split[y]]];
    Table[Length[Select[IntegerPartitions[n],oosQ]],{n,0,30}]

A353391 Number of compositions of n that are empty, a singleton, or whose run-lengths are a subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 22, 38, 45, 87, 93
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(9) = 4 through a(14) = 15 compositions (A..E = 10..14):
  (9)       (A)       (B)       (C)       (D)       (E)
  (333)     (2233)    (141122)  (2244)    (161122)  (2255)
  (121122)  (3322)    (221123)  (4422)    (221125)  (5522)
  (221121)  (131122)  (221132)  (151122)  (221134)  (171122)
            (221131)  (221141)  (221124)  (221143)  (221126)
                      (231122)  (221142)  (221152)  (221135)
                      (321122)  (221151)  (221161)  (221153)
                                (241122)  (251122)  (221162)
                                (421122)  (341122)  (221171)
                                          (431122)  (261122)
                                          (521122)  (351122)
                                                    (531122)
                                                    (621122)
                                                    (122121122)
                                                    (221121221)
		

Crossrefs

The non-recursive version is A353390, ranked by A353402.
The non-recursive consecutive version is A353392, ranked by A353432.
The non-recursive reverse version is A353403.
The unordered version is A353426, ranked by A353393 (nonprime A353389).
The consecutive version is A353430.
These compositions are ranked by A353431.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A329738 counts uniform compositions, partitions A047966.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-length.

Programs

  • Mathematica
    yosQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&&yosQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yosQ]],{n,0,15}]

A353400 Number of integer compositions of n with all run-lengths > 2.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 2, 4, 4, 5, 11, 11, 14, 27, 29, 37, 61, 72, 97, 147, 181, 246, 368, 470, 632, 914, 1198, 1611, 2286, 3018, 4079, 5709, 7619, 10329, 14333, 19258, 26142, 36069, 48688, 66114, 90800, 122913, 167020, 228735, 310167, 421708, 576499, 782803
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(7) = 1 through a(12) = 11 compositions:
  1111111   2222       333         22222        1112222       444
            11111111   111222      1111222      2222111       3333
                       222111      2221111      11111222      111333
                       111111111   1111111111   22211111      222222
                                                11111111111   333111
                                                              11112222
                                                              22221111
                                                              111111222
                                                              111222111
                                                              222111111
                                                              111111111111
		

Crossrefs

The = 2 version is A003242 aerated.
The <= 1 version is A003242 ranked by A333489.
The version for parts instead of run-lengths is A078012, both A353428.
The version for partitions is A100405.
The > 1 version is A114901, ranked by A353427.
The <= 2 version is A128695, matching A335464.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A106356 counts compositions by number of adjacent equal parts.
A274174 counts compositions with equal parts contiguous.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, add(
         `if`(i<>h, add(b(n-i*j, i), j=3..n/i), 0), i=1..n/3))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 17 2022
  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],!MemberQ[Length/@Split[#],1|2]&]],{n,0,15}]

Extensions

a(21)-a(49) from Alois P. Heinz, May 17 2022

A353402 Numbers k such that the k-th composition in standard order has its own run-lengths as a subsequence (not necessarily consecutive).

Original entry on oeis.org

0, 1, 10, 21, 26, 43, 53, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 693, 696, 697, 698, 699, 804, 826, 858, 860, 861, 885, 954, 1082, 1141, 1173, 1210, 1338, 1353, 1387, 1392, 1393, 1394, 1396, 1397, 1398, 1466
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

First differs from A353432 (the consecutive case) in having 0 and 53.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
    0:          0  ()
    1:          1  (1)
   10:       1010  (2,2)
   21:      10101  (2,2,1)
   26:      11010  (1,2,2)
   43:     101011  (2,2,1,1)
   53:     110101  (1,2,2,1)
   58:     111010  (1,1,2,2)
  107:    1101011  (1,2,2,1,1)
  117:    1110101  (1,1,2,2,1)
  174:   10101110  (2,2,1,1,2)
  186:   10111010  (2,1,1,2,2)
  292:  100100100  (3,3,3)
  314:  100111010  (3,1,1,2,2)
  346:  101011010  (2,2,1,2,2)
  348:  101011100  (2,2,1,1,3)
  349:  101011101  (2,2,1,1,2,1)
  373:  101110101  (2,1,1,2,2,1)
  430:  110101110  (1,2,2,1,1,2)
  442:  110111010  (1,2,1,1,2,2)
		

Crossrefs

The version for partitions is A325755, counted by A325702.
These compositions are counted by A353390.
The recursive version is A353431, counted by A353391.
The consecutive case is A353432, counted by A353392.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, reverse A228351.
A333769 lists run-lengths of compositions in standard order.
Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351017.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, consecutive A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, strict A333255, rev A225620, strict rev A333256.
- Runs are A272919.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rosQ[y_]:=Length[y]==0||MemberQ[Subsets[y],Length/@Split[y]];
    Select[Range[0,100],rosQ[stc[#]]&]

A353392 Number of compositions of n whose own run-lengths are a consecutive subsequence.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 2, 2, 2, 8, 12, 16, 20, 35, 46, 59, 81, 109, 144, 202, 282
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 0 through a(10) = 12 compositions (empty columns indicated by dots, 0 is the empty composition):
  0  1  .  .  22  122  1122  11221  21122  333     1333
                  221  2211  12211  22112  22113   2233
                                           22122   3322
                                           31122   3331
                                           121122  22114
                                           122112  41122
                                           211221  122113
                                           221121  131122
                                                   221131
                                                   311221
                                                   1211221
                                                   1221121
		

Crossrefs

The non-consecutive version for partitions is A325702.
The non-consecutive version is A353390, ranked by A353402.
The non-consecutive recursive version is A353391, ranked by A353431.
The non-consecutive reverse version is A353403.
The recursive version is A353430.
These compositions are ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||MemberQ[Join@@Table[Take[#,{i,j}],{i,Length[#]},{j,i,Length[#]}],Length/@Split[#]]&]],{n,0,15}]

A353401 Number of integer compositions of n with all prime run-lengths.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 4, 3, 6, 9, 10, 18, 27, 35, 54, 83, 107, 176, 242, 354, 515, 774, 1070, 1648, 2332, 3429, 4984, 7326, 10521, 15591, 22517, 32908, 48048, 70044, 101903, 149081, 216973, 316289, 461959, 672664, 981356, 1431256, 2086901, 3041577, 4439226, 6467735
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(9) = 9 compositions (empty column indicated by dot, 0 is the empty composition):
  0   .  11   111   22   11111   33     11122     44       333
                                 222    22111     1133     11133
                                 1122   1111111   3311     33111
                                 2211             11222    111222
                                                  22211    222111
                                                  112211   1111122
                                                           1112211
                                                           1122111
                                                           2211111
		

Crossrefs

The case of runs equal to 2 is A003242 aerated.
The <= 1 version is A003242 ranked by A333489.
The version for parts instead of run-lengths is A023360, both A353429.
The version for partitions is A055923.
The > 1 version is A114901, ranked by A353427.
The <= 2 version is A128695, matching A335464.
The > 2 version is A353400, partitions A100405.
Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351013, A351017.
A005811 counts runs in binary expansion.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A167606 counts compositions with adjacent parts coprime.
A329738 counts uniform compositions, partitions A047966.

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, add(`if`(i<>h, add(
         `if`(isprime(j), b(n-i*j, i), 0), j=2..n/i), 0), i=1..n/2))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 18 2022
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Length/@Split[#],_?(!PrimeQ[#]&)]&]],{n,0,15}]

Extensions

a(21)-a(45) from Alois P. Heinz, May 18 2022

A353403 Number of compositions of n whose own reversed run-lengths are a subsequence (not necessarily consecutive).

Original entry on oeis.org

1, 1, 0, 0, 3, 2, 5, 12, 16, 30, 45, 94, 159, 285, 477, 864, 1487, 2643
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(7) = 12 compositions:
  ()  (1)  .  .  (22)   (1121)  (1113)  (1123)
                 (112)  (1211)  (1122)  (1132)
                 (211)          (1221)  (2311)
                                (2211)  (3211)
                                (3111)  (11131)
                                        (11212)
                                        (11221)
                                        (12112)
                                        (12211)
                                        (13111)
                                        (21121)
                                        (21211)
		

Crossrefs

The non-reversed version is A353390, ranked by A353402, partitions A325702.
The non-reversed recursive version is A353391, ranked by A353431.
The non-reversed consecutive case is A353392, ranked by A353432.
The non-reversed recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],MemberQ[Subsets[#],Reverse[Length/@Split[#]]]&]],{n,0,15}]

A353431 Numbers k such that the k-th composition in standard order is empty, a singleton, or has its own run-lengths as a subsequence (not necessarily consecutive) that is already counted.

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 16, 32, 43, 58, 64, 128, 256, 292, 349, 442, 512, 586, 676, 697, 826, 1024, 1210, 1338, 1393, 1394, 1396, 1594, 2048, 2186, 2234, 2618, 2696, 2785, 2786, 2792, 3130, 4096, 4282, 4410, 4666, 5178, 5569, 5570, 5572, 5576, 5584, 6202, 8192
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

First differs from A353696 (the consecutive version) in having 22318, corresponding to the binary word 101011100101110 and standard composition (2,2,1,1,3,2,1,1,2), whose run-lengths (2,2,1,1,2,1) are subsequence but not a consecutive subsequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
     0:           0  ()
     1:           1  (1)
     2:          10  (2)
     4:         100  (3)
     8:        1000  (4)
    10:        1010  (2,2)
    16:       10000  (5)
    32:      100000  (6)
    43:      101011  (2,2,1,1)
    58:      111010  (1,1,2,2)
    64:     1000000  (7)
   128:    10000000  (8)
   256:   100000000  (9)
   292:   100100100  (3,3,3)
   349:   101011101  (2,2,1,1,2,1)
   442:   110111010  (1,2,1,1,2,2)
   512:  1000000000  (10)
   586:  1001001010  (3,3,2,2)
   676:  1010100100  (2,2,3,3)
   697:  1010111001  (2,2,1,1,3,1)
		

Crossrefs

The non-recursive version for partitions is A325755, counted by A325702.
These compositions are counted by A353391.
The version for partitions A353393, counted by A353426, w/o primes A353389.
The non-recursive version is A353402, counted by A353390.
The non-recursive consecutive case is A353432, counted by A353392.
The consecutive case is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, multisets A225620, strict A333255, sets A333256.
- Constant compositions are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rorQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&& rorQ[Length/@Split[y]];
    Select[Range[0,100],rorQ[stc[#]]&]

A353432 Numbers k such that the k-th composition in standard order has its own run-lengths as a consecutive subsequence.

Original entry on oeis.org

0, 1, 10, 21, 26, 43, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 696, 697, 804, 826, 860, 861, 885, 1082, 1141, 1173, 1210, 1338, 1387, 1392, 1393, 1394, 1396, 1594, 1653, 1700, 1720, 1721, 1882, 2106, 2165, 2186
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

First differs from A353402 (the non-consecutive version) in lacking 53.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The initial terms, their binary expansions, and the corresponding standard compositions:
     0:          0  ()
     1:          1  (1)
    10:       1010  (2,2)
    21:      10101  (2,2,1)
    26:      11010  (1,2,2)
    43:     101011  (2,2,1,1)
    58:     111010  (1,1,2,2)
   107:    1101011  (1,2,2,1,1)
   117:    1110101  (1,1,2,2,1)
   174:   10101110  (2,2,1,1,2)
   186:   10111010  (2,1,1,2,2)
   292:  100100100  (3,3,3)
   314:  100111010  (3,1,1,2,2)
   346:  101011010  (2,2,1,2,2)
   348:  101011100  (2,2,1,1,3)
   349:  101011101  (2,2,1,1,2,1)
   373:  101110101  (2,1,1,2,2,1)
   430:  110101110  (1,2,2,1,1,2)
   442:  110111010  (1,2,1,1,2,2)
		

Crossrefs

These compositions are counted by A353392.
This is the consecutive case of A353402, counted by A353390.
The non-consecutive recursive version is A353431, counted by A353391.
The recursive version is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, strict A333255, rev A225620, strict rev A333256.
- Runs are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Anti-runs are A333489, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    rorQ[y_]:=Length[y]==0||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]];
    Select[Range[0,10000],rorQ[stc[#]]&]

A353430 Number of integer compositions of n that are empty, a singleton, or whose own run-lengths are a consecutive subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 16, 22, 25, 37, 37, 45
Offset: 0

Views

Author

Gus Wiseman, May 16 2022

Keywords

Examples

			The a(n) compositions for selected n (A..E = 10..14):
  n=4:  n=6:    n=9:      n=10:     n=12:     n=14:
-----------------------------------------------------------
  (4)   (6)     (9)       (A)       (C)       (E)
  (22)  (1122)  (333)     (2233)    (2244)    (2255)
        (2211)  (121122)  (3322)    (4422)    (5522)
                (221121)  (131122)  (151122)  (171122)
                          (221131)  (221124)  (221126)
                                    (221142)  (221135)
                                    (221151)  (221153)
                                    (241122)  (221162)
                                    (421122)  (221171)
                                              (261122)
                                              (351122)
                                              (531122)
                                              (621122)
                                              (122121122)
                                              (221121221)
		

Crossrefs

Non-recursive non-consecutive version: counted by A353390, ranked by A353402, reverse A353403, partitions A325702.
Non-consecutive version: A353391, ranked by A353431, partitions A353426.
Non-recursive version: A353392, ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Mathematica
    yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]&&yoyQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yoyQ]],{n,0,15}]
Showing 1-10 of 13 results. Next