A353436 Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 1..m-1 such that the determinant of the Hankel matrix of any odd number of consecutive terms is not divisible by m >= 1.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 0, 0, 1, 4, 9, 4, 0, 0, 1, 5, 16, 22, 4, 0, 0, 1, 6, 25, 48, 56, 0, 0, 0, 1, 7, 36, 104, 144, 114, 0, 0, 0, 1, 8, 49, 180, 444, 320, 240, 0, 0, 0, 1, 9, 64, 298, 900, 1566, 720, 376, 0, 0, 0, 1, 10, 81, 468, 1828, 3744, 5576, 1312, 584, 0, 0, 0
Offset: 0
Examples
Array begins: n\m| 1 2 3 4 5 6 7 8 9 ---+--------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 1 | 0 1 2 3 4 5 6 7 8 2 | 0 1 4 9 16 25 36 49 64 3 | 0 0 4 22 48 104 180 298 468 4 | 0 0 4 56 144 444 900 1828 3444 5 | 0 0 0 114 320 1566 3744 9812 23208 6 | 0 0 0 240 720 5576 15552 52784 157104 7 | 0 0 0 376 1312 16544 54216 249424 968616 8 | 0 0 0 584 2400 49900 189468 1191264 5991624 9 | 0 0 0 724 3232 124052 550728 4955824 33844176 10 | 0 0 0 920 4560 314932 1604088 20623232 191898648
Crossrefs
Formula
T(n,m) = A353435(n,m) if m is prime.
T(n,1) = 0 if n >= 1.
T(n,2) = 0 if n >= 3.
T(n,3) = 0 if n >= 5.
T(n,4) = 0 if n >= 25.
T(n,5) = 0 if n >= 23.