A353446 Let g be the inverse Möbius transform of the Eisenstein integer-valued function f defined in A353445. a(n) is twice the real part of g(n).
2, 1, 1, 0, 1, 2, 1, 2, 0, -1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 0, -1, -1, 1, 1, 0, 2, 2, 0, 1, 1, 1, 0, 2, -1, 2, 0, 1, 2, -1, 1, 1, 1, 1, 0, 0, -1, 1, 2, 0, 0, 2, 0, 1, 1, -1, 1, -1, 2, 1, 0, 1, -1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 1, 2, 0, 0, 2, 1, 1, -1, 1, -1, 1, 0, -1, 2, -1, 1, 1, 0, -1, 0, 2, -1, 2, 0, 1, 0, 0, 0, 1
Offset: 1
Keywords
Links
- Peter Munn, Table of n, a(n) for n = 1..10000
- Peter Munn, Figure showing relationship of the Eisenstein integer g(n) to the presence of n in other sequences.
- Eric Weisstein's World of Mathematics, Eisenstein Integer
Crossrefs
Programs
-
PARI
A050985(n) = { my(f=factor(n)); f[, 2] = apply(x->(x % 3), f[, 2]); factorback(f); }; \\ From A050985 A087204(n) = ([2, 1, -1, -2, -1, 1][1+(n%6)]); A195017(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * (-1)^(1+primepi(f[i,1])))); }; A353446(n) = { my(u=A050985(n)); issquarefree(u) * A087204(abs(A195017(u))); };
Comments