cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353459 Sum of A353457 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, -2, 0, 1, 1, 2, 0, -1, 0, -2, -2, 1, 0, -1, 0, 1, 2, 2, 0, -1, 1, -2, 1, -1, 0, 0, 0, 1, -2, 2, -2, 0, 0, -2, 2, 1, 0, 0, 0, 1, -1, 2, 0, -1, 1, 1, -2, -1, 0, -1, 2, -1, 2, -2, 0, -1, 0, 2, 1, 1, -2, 0, 0, 1, -2, 0, 0, 0, 0, -2, -1, -1, -2, 0, 0, 1, 1, 2, 0, 1, 2, -2, 2, 1, 0, 1, 2, 1, -2, 2, -2, -1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2022

Keywords

Comments

Only values in range {-2, -1, 0, +1, +2} occur.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A064989(n) = { my(f=factor(A000265(n))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    memoA353457 = Map();
    A353457(n) = if(1==n,1,my(v); if(mapisdefined(memoA353457,n,&v), v, v = -sumdiv(n,d,if(dA353457(A064989(n/d))*A353457(d),0)); mapput(memoA353457,n,v); (v)));
    A353459(n) = (A353457(n)+A353457(A064989(n)));
    
  • Python
    from math import prod
    from sympy import factorint, primepi
    def A353459(n):
        f = [(primepi(p)&1, -int(e==1)) for p, e in factorint(n).items()]
        return prod(e for p, e in f if not p)+prod(e for p, e in f if p) # Chai Wah Wu, Jan 05 2023

Formula

a(n) = A353457(n) + A353458(n) = A353457(n) + A353457(A064989(n)).
For n > 1, a(n) = -Sum_{d|n, 1A353457(d) * A353458(n/d). [As the sequences are Dirichlet inverses of each other]
For all n >= 1, a(n) = a(A003961(n)) = a(A348717(n)).