cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353502 Numbers with all prime indices and exponents > 2.

Original entry on oeis.org

1, 125, 343, 625, 1331, 2197, 2401, 3125, 4913, 6859, 12167, 14641, 15625, 16807, 24389, 28561, 29791, 42875, 50653, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 148877, 161051, 166375, 205379, 214375, 226981, 274625, 279841, 300125, 300763, 357911
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms together with their prime indices:
       1: {}
     125: {3,3,3}
     343: {4,4,4}
     625: {3,3,3,3}
    1331: {5,5,5}
    2197: {6,6,6}
    2401: {4,4,4,4}
    3125: {3,3,3,3,3}
    4913: {7,7,7}
    6859: {8,8,8}
   12167: {9,9,9}
   14641: {5,5,5,5}
   15625: {3,3,3,3,3,3}
   16807: {4,4,4,4,4}
   24389: {10,10,10}
   28561: {6,6,6,6}
   29791: {11,11,11}
   42875: {3,3,3,4,4,4}
		

Crossrefs

The version for only parts is A007310, counted by A008483.
The version for <= 2 instead of > 2 is A018256, # of compositions A137200.
The version for only multiplicities is A036966, counted by A100405.
The version for indices and exponents prime (instead of > 2) is:
- listed by A346068
- counted by A351982
- only exponents: A056166, counted by A055923
- only parts: A076610, counted by A000607
The version for > 1 instead of > 2 is A062739, counted by A339222.
The version for compositions is counted by A353428, see A078012, A353400.
The partitions with these Heinz numbers are counted by A353501.
A000726 counts partitions with multiplicities <= 2, compositions A128695.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A295341 counts partitions with some multiplicity > 2, compositions A335464.

Programs

  • Mathematica
    Select[Range[10000],#==1||!MemberQ[FactorInteger[#],{?(#<5&),}|{,?(#<3&)}]&]

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime > 3} (1 + 1/(p^2*(p-1))) = (72/95)*A065483 = 1.0154153584... . - Amiram Eldar, May 28 2022