A018256 Divisors of 36.
1, 2, 3, 4, 6, 9, 12, 18, 36
Offset: 1
Crossrefs
Programs
-
Mathematica
Divisors[36] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
-
PARI
divisors(36) \\ Charles R Greathouse IV, Jun 21 2017
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Divisors[36] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
divisors(36) \\ Charles R Greathouse IV, Jun 21 2017
The a(n) compositions for selected n: n=16: n=18: n=20: n=21: n=24: ---------------------------------------------------- (4444) (666) (5555) (777) (888) (333333) (44444) (333444) (6666) (444333) (333555) (3333333) (444444) (555333) (3333444) (4443333) (33333333)
b:= proc(n, h) option remember; `if`(n=0, 1, add( `if`(i=h, 0, add(b(n-i*j, i), j=3..n/i)), i=3..n/3)) end: a:= n-> b(n, 0): seq(a(n), n=0..80); # Alois P. Heinz, May 18 2022
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1|2]&&!MemberQ[Length/@Split[#],1|2]&]],{n,0,15}]
A126272 := proc(n) local pf,i,p,e,resul ; if n = 1 then 27 ; else pf := ifactors(n)[2] ; resul := 1 ; for i from 1 to nops(pf) do p := op(1,op(i,pf)) ; e := op(2,op(i,pf)) ; resul := resul * nextprime(nextprime(p))^(e+2) ; od ; resul ; fi ; end: for n from 1 to 40 do printf("%d, ",A126272(n)) ; od ; # R. J. Mathar, Apr 20 2007
f[p_, e_] := NextPrime[p, 2]^(e + 2); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
The a(n) partitions for selected n (A = 10): n=9: n=12: n=21: n=24: n=30: ------------------------------------------------------ (333) (444) (777) (888) (AAA) (3333) (444333) (6666) (66666) (3333333) (444444) (555555) (555333) (666444) (4443333) (777333) (33333333) (6663333) (55533333) (444333333) (3333333333)
Table[Length[Select[IntegerPartitions[n],Min@@#>2&&Min@@Length/@Split[#]>2&]],{n,0,30}]
Comments