A353503 Numbers whose product of prime indices equals their product of prime exponents (prime signature).
1, 2, 12, 36, 40, 112, 352, 832, 960, 1296, 2176, 2880, 4864, 5376, 11776, 12544, 16128, 29696, 33792, 34560, 38400, 63488, 64000, 101376, 115200, 143360, 151552, 159744, 335872, 479232, 704512, 835584, 1540096, 1658880, 1802240
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 12: {1,1,2} 36: {1,1,2,2} 40: {1,1,1,3} 112: {1,1,1,1,4} 352: {1,1,1,1,1,5} 832: {1,1,1,1,1,1,6} 960: {1,1,1,1,1,1,2,3} 1296: {1,1,1,1,2,2,2,2} 2176: {1,1,1,1,1,1,1,7} 2880: {1,1,1,1,1,1,2,2,3} 4864: {1,1,1,1,1,1,1,1,8} 5376: {1,1,1,1,1,1,1,1,2,4}
Crossrefs
These partitions are counted by A353506.
Programs
-
Mathematica
Select[Range[1000],Times@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]^k]==Times@@Last/@FactorInteger[#]&]
-
Python
from itertools import count, islice from math import prod from sympy import primepi, factorint def A353503_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n: n == 1 or prod((f:=factorint(n)).values()) == prod(primepi(p)**e for p,e in f.items()), count(max(startvalue,1))) A353503_list = list(islice(A353503_gen(),20)) # Chai Wah Wu, May 20 2022
Comments