A353508 Number of integer compositions of n with no ones or runs of length 1.
1, 0, 0, 0, 1, 0, 2, 0, 2, 1, 4, 0, 8, 2, 11, 4, 21, 5, 37, 12, 57, 25, 104, 38, 177, 79, 292, 149, 513, 251, 876, 482, 1478, 871, 2562, 1533, 4387, 2815, 7473, 5036, 12908, 8935, 22135, 16085, 37940, 28611, 65422, 50731, 112459, 90408, 193386, 160119, 333513
Offset: 0
Keywords
Examples
The a(0) = 1 through a(14) = 11 compositions (empty columns indicated by dots, 0 is the empty composition): 0 . . . 22 . 33 . 44 333 55 . 66 22333 77 222 2222 2233 444 33322 2255 3322 2244 3344 22222 3333 4433 4422 5522 22233 22244 33222 44222 222222 222233 223322 332222 2222222
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
The version for partitions is A339222.
Compositions counted by their run-lengths:
- For run-lengths = 2 we have A003242 aerated.
- For run-lengths all prime we have A353401.
- For run-lengths and parts > 2 we have A353428.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A106356 counts compositions by number of adjacent equal parts.
A261983 counts non-anti-run compositions.
A274174 counts compositions with equal parts contiguous.
Programs
-
Maple
b:= proc(n,h) option remember; `if`(n=0, 1, add( `if`(i<>h, add(b(n-i*j, i), j=2..n/i), 0), i=2..n/2)) end: a:= n-> b(n, 0): seq(a(n), n=0..60); # Alois P. Heinz, May 17 2022
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1]&&!MemberQ[Length/@Split[#],1]&]],{n,0,15}]
Extensions
a(41)-a(52) from Alois P. Heinz, May 17 2022