cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353510 Square array A(n,k), n >= 1, k >= 0, with A(n,0) = n, and for k > 0, A(n,k) = A181819(A(n,k-1)), read by descending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 5, 1, 2, 2, 2, 2, 6, 1, 2, 2, 2, 2, 4, 7, 1, 2, 2, 2, 2, 3, 2, 8, 1, 2, 2, 2, 2, 2, 2, 5, 9, 1, 2, 2, 2, 2, 2, 2, 2, 3, 10, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 11, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 12, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 13, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 14
Offset: 1

Views

Author

Antti Karttunen and Gus Wiseman, Apr 27 2022

Keywords

Comments

The row indexing of this array starts from 1, and the column indexing starts from 0, thus it is read by descending antidiagonals as A(1,0), A(1,1), A(2,0), A(1,2), A(2,1), A(3,0), etc.
A(n, k) gives the k-th prime shadow (the k-fold iterate of A181819) of n.

Examples

			The top left {0..6} x {1..16} corner of the array:
   1, 1, 1, 1, 1, 1, 1,
   2, 2, 2, 2, 2, 2, 2,
   3, 2, 2, 2, 2, 2, 2,
   4, 3, 2, 2, 2, 2, 2,
   5, 2, 2, 2, 2, 2, 2,
   6, 4, 3, 2, 2, 2, 2,
   7, 2, 2, 2, 2, 2, 2,
   8, 5, 2, 2, 2, 2, 2,
   9, 3, 2, 2, 2, 2, 2,
  10, 4, 3, 2, 2, 2, 2,
  11, 2, 2, 2, 2, 2, 2,
  12, 6, 4, 3, 2, 2, 2,
  13, 2, 2, 2, 2, 2, 2,
  14, 4, 3, 2, 2, 2, 2,
  15, 4, 3, 2, 2, 2, 2,
  16, 7, 2, 2, 2, 2, 2,
		

Crossrefs

This is a full square array version of irregular triangle A325239, which after 1, lists the terms on each row only up to the first 2.
Columns 0..2: A000027, A181819, A328830.
Rows 1..2: A000012, A007395.

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ Prime[FactorInteger[n][[All, -1]]]]; Table[Function[m, Which[m == 1, a[1, k] = 1, k == 0, a[m, 0] = m, True, Set[a[m, k], f[a[m, k - 1]]]]][n - k + 1], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Apr 28 2022 *)
  • PARI
    up_to = 105;
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A353510sq(n, k) = { while(k, n = A181819(n); k--); (n); };
    A353510list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A353510sq(a-col,col))); (v); };
    v353510 = A353510list(up_to);
    A353510(n) = v353510[n];