A353510 Square array A(n,k), n >= 1, k >= 0, with A(n,0) = n, and for k > 0, A(n,k) = A181819(A(n,k-1)), read by descending antidiagonals.
1, 1, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 5, 1, 2, 2, 2, 2, 6, 1, 2, 2, 2, 2, 4, 7, 1, 2, 2, 2, 2, 3, 2, 8, 1, 2, 2, 2, 2, 2, 2, 5, 9, 1, 2, 2, 2, 2, 2, 2, 2, 3, 10, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 11, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 12, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 13, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 14
Offset: 1
Examples
The top left {0..6} x {1..16} corner of the array: 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 4, 3, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 8, 5, 2, 2, 2, 2, 2, 9, 3, 2, 2, 2, 2, 2, 10, 4, 3, 2, 2, 2, 2, 11, 2, 2, 2, 2, 2, 2, 12, 6, 4, 3, 2, 2, 2, 13, 2, 2, 2, 2, 2, 2, 14, 4, 3, 2, 2, 2, 2, 15, 4, 3, 2, 2, 2, 2, 16, 7, 2, 2, 2, 2, 2,
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11476 (rows n = 1..150, flattened)
Crossrefs
Programs
-
Mathematica
f[n_] := If[n == 1, 1, Times @@ Prime[FactorInteger[n][[All, -1]]]]; Table[Function[m, Which[m == 1, a[1, k] = 1, k == 0, a[m, 0] = m, True, Set[a[m, k], f[a[m, k - 1]]]]][n - k + 1], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Apr 28 2022 *)
-
PARI
up_to = 105; A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A353510sq(n, k) = { while(k, n = A181819(n); k--); (n); }; A353510list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A353510sq(a-col,col))); (v); }; v353510 = A353510list(up_to); A353510(n) = v353510[n];
Comments