A353512 n multiplied by the least nonzero digit missing from its primorial base representation.
0, 2, 4, 6, 4, 15, 12, 14, 16, 18, 30, 33, 12, 39, 42, 45, 16, 51, 18, 38, 40, 42, 22, 92, 24, 50, 52, 54, 28, 87, 60, 62, 64, 66, 102, 105, 72, 74, 76, 78, 120, 123, 126, 129, 132, 135, 138, 141, 96, 98, 100, 102, 208, 212, 108, 110, 112, 114, 174, 177, 60, 183, 186, 189, 64, 195, 198, 201, 204, 207, 210, 213, 72
Offset: 0
Examples
19 in primorial base (A049345) is written as "301". The least missing nonzero digit is 2, thus A329028(19) = 2 and a(19) = 2*19 = 38.
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; n * Min[Complement[Range[Max[s]+1], s]]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Mar 13 2024 *)
-
PARI
A329028(n) = { my(m=Map(), p=2); while(n, mapput(m,(n%p),1); n = n\p; p = nextprime(1+p)); for(k=1,oo,if(!mapisdefined(m,k),return(k))); }; A353512(n) = (n * A329028(n));
Formula
a(n) = n * A329028(n).