A353550 Primes having cube prime gaps to both neighbor primes.
89689, 107441, 367957, 368021, 725209, 803749, 832583, 919511, 1070753, 1315151, 1333027, 1353487, 1414913, 1843357, 2001911, 2038039, 2201273, 2207783, 2269537, 2356699, 2356763, 2670817, 2696843, 2715071, 2717929, 2731493, 2906887, 2971841, 3032467, 3184177, 3252217
Offset: 1
Keywords
Examples
a(2) = 107441; previous prime is 107377 and the gap is 64 (a cube); next prime is 107449 and the gap is 8 (a cube too).
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
iscube:= proc(n) option remember; is(n=iroot(n, 3)^3) end: q:= n-> isprime(n) and andmap(iscube, [n-prevprime(n), nextprime(n)-n]): select(q, [$3..3500000])[]; # Alois P. Heinz, Apr 25 2022
-
Mathematica
p = Prime[Range[3*10^5]]; pos = Position[Differences[p], ?(IntegerQ@Surd[#, 3] &)] // Flatten; p[[pos[[Position[Differences[pos], 1] // Flatten]] + 1]] (* _Amiram Eldar, Apr 26 2022 *)
-
Python
from sympy import sieve as p def A016743(totest): return (totest % 2 == 0 and round(totest**(1/3))**3 == totest) print([p[n] for n in range(2,235000) if A016743(p[n]-p[n-1]) and A016743(p[n+1]-p[n])])
Comments