A353596 Triangle read by rows, T(n, k) = [x^k] (-2)^n*GegenbauerC(n, -1/2, x).
1, 0, 2, 2, 0, -2, 0, -4, 0, 4, -2, 0, 12, 0, -10, 0, 12, 0, -40, 0, 28, 4, 0, -60, 0, 140, 0, -84, 0, -40, 0, 280, 0, -504, 0, 264, -10, 0, 280, 0, -1260, 0, 1848, 0, -858, 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860, 28, 0, -1260, 0, 9240, 0, -24024, 0, 25740, 0, -9724
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 0, 2; [2] 2, 0, -2; [3] 0, -4, 0, 4; [4] -2, 0, 12, 0, -10; [5] 0, 12, 0, -40, 0, 28; [6] 4, 0, -60, 0, 140, 0, -84; [7] 0, -40, 0, 280, 0, -504, 0, 264; [8] -10, 0, 280, 0, -1260, 0, 1848, 0, -858; [9] 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860; . Unsigned antidiagonals |T(n+k, n-k)|: [0] 1; [1] 2, 2; [2] 2, 4, 2; [3] 4, 12, 12, 4; [4] 10, 40, 60, 40, 10; [5] 28, 140, 280, 280, 140, 28; [6] 84, 504, 1260, 1680, 1260, 504, 84;
Crossrefs
Programs
-
Maple
g := n -> (-2)^n*GegenbauerC(n, -1/2, x): seq(print(seq(coeff(simplify(g(n)), x, k), k = 0..n)), n = 0..9);
-
Mathematica
s={}; For[n=0,n<11,n++,For[k=0,k
Detlef Meya, Oct 03 2023 *)