A353659 Rectangular array read by downwards antidiagonals: row k lists the numbers whose Lucas-Fibonacci representation has k terms.
1, 3, 2, 4, 5, 15, 7, 6, 17, 25, 11, 8, 22, 28, 172, 18, 9, 24, 36, 174, 279, 29, 10, 27, 39, 193, 282, 1913, 47, 12, 33, 44, 195, 313, 1915, 3096, 76, 13, 35, 54, 248, 316, 1934, 3099, 21221, 123, 14, 38, 57, 250, 402, 1936, 3130, 21223, 34337
Offset: 1
Examples
Northwest corner: 1 3 4 7 11 18 29 47 76 123 2 5 6 8 9 10 12 13 14 16 15 17 22 24 27 33 35 38 40 41 25 28 36 39 44 54 57 62 65 66 172 174 193 195 248 250 269 271 276 278 279 282 313 316 402 405 436 439 447 450 1913 1915 1934 1936 2146 2148 2167 2169 2756 2758 3096 3099 3130 3133 3473 3476 3507 3510 4460 4463
Programs
-
Mathematica
fib = Map[Fibonacci, Range[2, 51]]; luc = Map[LucasL, Range[1, 50]]; t = Map[(n = #; lf = {}; f = 0; l = 0; While[IntegerQ[f], n = n - l - f; l = luc[[NestWhile[# + 1 &, 1, luc[[#]] <= n &] - 1]]; f = fib[[NestWhile[# + 1 &, 1, fib[[#]] <= n - l &] - 1]]; AppendTo[lf, {l, f}]]; {Total[#], #} &[Select[Flatten[lf], IntegerQ]]) &, Range[50000]]; Length[t]; u = Table[Length[t[[n]][[2]]], {n, 1, Length[t]}]; Take[u, 150] TableForm[Table[Flatten[Position[u, k]], {k, 1, 11}]]; w[k_, n_] := Flatten[Position[u, k]][[n]] Table[w[n - k + 1, k], {n, 11}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, May 04 2022 *)
Comments