A353708 a(0)=0, a(1)=1; thereafter a(n) = smallest nonnegative integer not among the earlier terms of the sequence such that a(n) and a(n-2) have no common 1-bits in their binary representations.
0, 1, 2, 4, 5, 3, 8, 12, 6, 16, 9, 7, 18, 24, 13, 32, 34, 10, 17, 20, 14, 11, 33, 36, 22, 19, 40, 44, 21, 64, 42, 15, 65, 48, 26, 66, 37, 25, 72, 38, 23, 73, 96, 50, 27, 68, 100, 35, 128, 28, 29, 67, 98, 52, 129, 74, 30, 49, 97, 70, 130, 41, 45, 80, 82, 39, 132, 88, 43, 131, 84, 56, 136, 69, 51, 58, 76, 133, 144, 90, 46, 160, 81, 31, 134, 192, 57, 47
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384 (a(n) for n = 0..748 by N. J. A. Sloane)
- Index entries for sequences that are permutations of the nonnegative integers
Programs
-
Maple
read(transforms) : # ANDnos def'd here A353708 := proc(n) option remember; local c, i, known ; if n <= 2 then n; else for c from 1 do known := false ; for i from 1 to n-1 do if procname(i) = c then known := true; break ; end if; end do: if not known and ANDnos(c, procname(n-2)) =0 then return c; end if; end do: end if; end proc: # Following R. J. Mathar's program for A109812. [seq(A353708(n), n=0..256)] ; # second Maple program: b:= proc() false end: t:= 2: a:= proc(n) option remember; global t; local k; if n<2 then n else for k from t while b(k) or Bits[And](k, a(n-2))>0 do od; b(k):=true; while b(t) do t:=t+1 od; k fi end: seq(a(n), n=0..100); # Alois P. Heinz, May 06 2022
-
Mathematica
nn = 87; c[] = -1; a[0] = c[0] = 0; a[1] = c[1] = 1; u = 2; Do[k = u; While[Nand[c[k] == -1, BitAnd[a[n - 2], k] == 0], k++]; Set[{a[n], c[k]}, {k, n}]; If[k == u, While[c[u] > -1, u++]], {n, 2, nn}]; Array[a, nn + 1, 0] (* _Michael De Vlieger, May 06 2022 *)
Comments