A353747 a(n) = phi(n) + A064989(n), where phi is Euler totient function, and A064989 shifts the prime factorization one step towards lower primes.
2, 2, 4, 3, 7, 4, 11, 5, 10, 7, 17, 6, 23, 11, 14, 9, 29, 10, 35, 11, 22, 17, 41, 10, 29, 23, 26, 17, 51, 14, 59, 17, 34, 29, 39, 16, 67, 35, 46, 19, 77, 22, 83, 27, 36, 41, 89, 18, 67, 29, 58, 35, 99, 26, 61, 29, 70, 51, 111, 22, 119, 59, 56, 33, 81, 34, 127, 45, 82, 39, 137, 28, 143, 67, 58, 53, 95, 46, 151, 35, 70
Offset: 1
Keywords
Links
Programs
-
Mathematica
f1[p_, e_] := (p - 1)*p^(e - 1); f2[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]; a[1] = 2; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f; Array[a, 80] (* Amiram Eldar, May 07 2022 *)
-
PARI
A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); }; A353747(n) = (eulerphi(n)+A064989(n));
Formula
For n >= 0, a(4n+2) = a(2n+1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-q(p))) + 3/Pi^2 = 0.524667479..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023