A353749 a(n) = phi(n) * A064989(n), where phi is Euler totient function, and A064989 shifts the prime factorization one step towards lower primes.
1, 1, 4, 2, 12, 4, 30, 4, 24, 12, 70, 8, 132, 30, 48, 8, 208, 24, 306, 24, 120, 70, 418, 16, 180, 132, 144, 60, 644, 48, 870, 16, 280, 208, 360, 48, 1116, 306, 528, 48, 1480, 120, 1722, 140, 288, 418, 1978, 32, 1050, 180, 832, 264, 2444, 144, 840, 120, 1224, 644, 3074, 96, 3540, 870, 720, 32, 1584, 280, 4026, 416
Offset: 1
Links
Programs
-
Mathematica
f[p_, e_] := (p - 1)*p^(e - 1)*If[p == 2, 1, NextPrime[p, -1]^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, May 07 2022 *)
-
PARI
A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); }; A353749(n) = (eulerphi(n)*A064989(n));
Formula
Multiplicative with a(p^e) = (p - 1) * p^(e-1) * q^e, where q is the largest prime less than p, and 1 if p = 2.
For n >= 0, a(4n+2) = a(2n+1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) * Product_{p prime} ((p^3-q)/((p+1)*(p^2-q))) = 0.1118576617..., where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Dec 31 2022