cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353764 Numbers k for which A353749(sigma(k)) is a multiple of A353749(k), where A353749(k) = phi(k) * A064989(k), and A064989 shifts the prime factorization one step towards lower primes.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 18, 20, 24, 28, 30, 32, 40, 60, 72, 84, 90, 108, 120, 128, 200, 216, 224, 234, 252, 360, 384, 496, 600, 640, 672, 864, 936, 1080, 1120, 1152, 1170, 1488, 1800, 1920, 2016, 2176, 3200, 3360, 3456, 4320, 4464, 4680, 5148, 5600, 5760, 6048, 6528, 6552, 8128, 9600, 10080, 10880, 14976, 16800, 17280
Offset: 1

Views

Author

Antti Karttunen, May 10 2022

Keywords

Comments

Question: Are there any odd terms after the initial one? See A353789, A353796, A353797.

Crossrefs

Positions of 1's in A353762. Cf. also A353765.
Subsequence of A353759. Cf. A007691 (a subsequence).

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*p^(e - 1)*If[p == 2, 1, NextPrime[p, -1]^e]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[20000], Divisible[s[DivisorSigma[1, #]], s[#]] &] (* Amiram Eldar, May 10 2022 *)
  • PARI
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353749(n) = (eulerphi(n)*A064989(n));
    isA353764(n) = { my(s=sigma(n)); !(A353749(s)%A353749(n)); };