cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353783 a(n) = LCM_{p^e||n} sigma(p^e), where n = Product_{p^e||n}, with each p^e the maximal power of prime p that divides n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 6, 12, 28, 14, 24, 12, 31, 18, 39, 20, 42, 8, 12, 24, 60, 31, 42, 40, 56, 30, 12, 32, 63, 12, 18, 24, 91, 38, 60, 28, 30, 42, 24, 44, 84, 78, 24, 48, 124, 57, 93, 36, 14, 54, 120, 12, 120, 20, 30, 60, 84, 62, 96, 104, 127, 42, 12, 68, 126, 24, 24, 72, 195, 74, 114, 124, 140, 24, 84, 80
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Cf. also A345044, A345046.
Cf. A336547 (positions where equal to sigma).

Programs

  • Mathematica
    Array[LCM @@ DivisorSigma[1, Power @@@ FactorInteger[#]] &, 79] (* Michael De Vlieger, May 08 2022 *)
  • PARI
    A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };

Formula

a(n) = A000203(n) / A353784(n).
a(n) = A353785(n) * A080398(n).
For all n >= 1, A087207(a(n)) = A351560(n).