A353789 Multiplicative with a(p^e) = (q - 1) * q^(e-1) * p^e, where q is the least prime greater than p.
1, 4, 12, 24, 30, 48, 70, 144, 180, 120, 132, 288, 208, 280, 360, 864, 306, 720, 418, 720, 840, 528, 644, 1728, 1050, 832, 2700, 1680, 870, 1440, 1116, 5184, 1584, 1224, 2100, 4320, 1480, 1672, 2496, 4320, 1722, 3360, 1978, 3168, 5400, 2576, 2444, 10368, 5390, 4200, 3672, 4992, 3074, 10800, 3960, 10080, 5016, 3480
Offset: 1
Links
Programs
-
Mathematica
f[p_, e_] := ((q = NextPrime[p]) - 1) * q^(e - 1) * p^e; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 10 2022 *)
-
PARI
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A353789(n) = (n * eulerphi(A003961(n)));
-
Python
from math import prod from sympy import nextprime, factorint def A353789(n): return prod((q:= nextprime(p))**(e-1)*p**e*(q-1) for p, e in factorint(n).items()) # Chai Wah Wu, May 10 2022
Formula
Multiplicative with a(p^e) = (q - 1) * q^(e-1) * p^e, where q is the least prime greater than p.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^3-p^2-p+1)/(p^3 - p*q)) = 0.836506229..., where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Dec 31 2022
Comments