cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353789 Multiplicative with a(p^e) = (q - 1) * q^(e-1) * p^e, where q is the least prime greater than p.

Original entry on oeis.org

1, 4, 12, 24, 30, 48, 70, 144, 180, 120, 132, 288, 208, 280, 360, 864, 306, 720, 418, 720, 840, 528, 644, 1728, 1050, 832, 2700, 1680, 870, 1440, 1116, 5184, 1584, 1224, 2100, 4320, 1480, 1672, 2496, 4320, 1722, 3360, 1978, 3168, 5400, 2576, 2444, 10368, 5390, 4200, 3672, 4992, 3074, 10800, 3960, 10080, 5016, 3480
Offset: 1

Views

Author

Antti Karttunen, May 10 2022

Keywords

Comments

Question: Does a(n) divide A353790(n) only when n=1? Compare to A353764.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((q = NextPrime[p]) - 1) * q^(e - 1) * p^e; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 10 2022 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A353789(n) = (n * eulerphi(A003961(n)));
    
  • Python
    from math import prod
    from sympy import nextprime, factorint
    def A353789(n): return prod((q:= nextprime(p))**(e-1)*p**e*(q-1) for p, e in factorint(n).items()) # Chai Wah Wu, May 10 2022

Formula

Multiplicative with a(p^e) = (q - 1) * q^(e-1) * p^e, where q is the least prime greater than p.
a(n) = A353749(A003961(n)) = n * A003972(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^3-p^2-p+1)/(p^3 - p*q)) = 0.836506229..., where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Dec 31 2022