cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353792 a(n) = A003958(sigma(n)) * A064989(sigma(n)).

Original entry on oeis.org

1, 4, 1, 30, 4, 4, 1, 48, 132, 16, 4, 30, 30, 4, 4, 870, 16, 528, 12, 120, 1, 16, 4, 48, 870, 120, 12, 30, 48, 16, 1, 480, 4, 64, 4, 3960, 306, 48, 30, 192, 120, 4, 70, 120, 528, 16, 4, 870, 1224, 3480, 16, 900, 64, 48, 16, 48, 12, 192, 48, 120, 870, 4, 132, 14238, 120, 16, 208, 480, 4, 16, 16, 6336, 1116, 1224, 870
Offset: 1

Views

Author

Antti Karttunen, May 11 2022

Keywords

Crossrefs

Cf. A046528 (positions of 1's).
Cf. also A353750.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353792(n) = { my(s=sigma(n)); (A003958(s)*A064989(s)); };
    
  • PARI
    A353792(n) = { my(f=factor(n),s); prod(i=1, #f~, s = sigma(f[i,1]^f[i,2]); A003958(s)*A064989(s)); };

Formula

Multiplicative with a(p^e) = A003958(1 + p + ... + p^e) * A064989(1 + p + ... + p^e).
a(n) = A353791(A000203(n)).
a(n) = A351442(n) * A350073(n) = A003958(A000203(n)) * A064989(A000203(n)).