A353793 Multiplicative with a(p^e) = ((q-1)*p)^e, where q is the least prime larger than p.
1, 4, 12, 16, 30, 48, 70, 64, 144, 120, 132, 192, 208, 280, 360, 256, 306, 576, 418, 480, 840, 528, 644, 768, 900, 832, 1728, 1120, 870, 1440, 1116, 1024, 1584, 1224, 2100, 2304, 1480, 1672, 2496, 1920, 1722, 3360, 1978, 2112, 4320, 2576, 2444, 3072, 4900, 3600, 3672, 3328, 3074, 6912, 3960, 4480, 5016, 3480, 3540
Offset: 1
Links
Programs
-
Mathematica
f[p_, e_] := ((NextPrime[p] - 1)*p)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Dec 31 2022 *)
-
PARI
A353793(n) = { my(f=factor(n)); for(i=1, #f~, f[i,1] = f[i,1]*(nextprime(f[i,1]+1)-1)); factorback(f); };
Formula
a(n) = n * A339905(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^2-p)/(p^2-q(p)+1)) = 0.49154782..., where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Dec 31 2022