cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353793 Multiplicative with a(p^e) = ((q-1)*p)^e, where q is the least prime larger than p.

Original entry on oeis.org

1, 4, 12, 16, 30, 48, 70, 64, 144, 120, 132, 192, 208, 280, 360, 256, 306, 576, 418, 480, 840, 528, 644, 768, 900, 832, 1728, 1120, 870, 1440, 1116, 1024, 1584, 1224, 2100, 2304, 1480, 1672, 2496, 1920, 1722, 3360, 1978, 2112, 4320, 2576, 2444, 3072, 4900, 3600, 3672, 3328, 3074, 6912, 3960, 4480, 5016, 3480, 3540
Offset: 1

Views

Author

Antti Karttunen, May 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((NextPrime[p] - 1)*p)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Dec 31 2022 *)
  • PARI
    A353793(n) = { my(f=factor(n)); for(i=1, #f~, f[i,1] = f[i,1]*(nextprime(f[i,1]+1)-1)); factorback(f); };

Formula

a(n) = A353791(A003961(n)).
a(n) = n * A339905(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^2-p)/(p^2-q(p)+1)) = 0.49154782..., where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Dec 31 2022