cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353794 a(n) = A353791(sigma(A003961(n))), where A353791(n) = A003958(n) * A064989(n).

Original entry on oeis.org

1, 1, 4, 132, 1, 4, 4, 12, 870, 1, 30, 528, 16, 4, 4, 4900, 12, 870, 4, 132, 16, 30, 48, 48, 1224, 16, 528, 528, 1, 4, 306, 3960, 120, 12, 4, 114840, 120, 4, 64, 12, 70, 16, 4, 3960, 870, 48, 64, 19600, 9180, 1224, 48, 2112, 48, 528, 30, 48, 16, 1, 870, 528, 208, 306, 3480, 1191372, 16, 120, 16, 1584, 192, 4, 1116
Offset: 1

Views

Author

Antti Karttunen, May 11 2022

Keywords

Comments

It is conjectured that a(n) is not a multiple of A353793(n) on any other n except on n=1. See also A353795.

Crossrefs

Cf. A000203, A003958, A003961, A003973, A064989, A326042, A351456, A353791, A353792, A353793, A353795 [numbers k such that k divides a(k)].
Cf. also A353790.

Programs

  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353794(n) = { my(s=sigma(A003961(n))); (A003958(s)*A064989(s)); };

Formula

Multiplicative with a(p^e) = A003958(1 + q + ... + q^e) * A064989(1 + q + ... + q^e), where q is the least prime larger than p.
a(n) = A353791(A003973(n)) = A353792(A003961(n)).
a(n) = A326042(n) * A351456(n) = A064989(A003973(n)) * A003958(A003973(n)).

A353796 Numbers k such that k divides A353790(k), where A353790(n) = phi(A003973(n)) * A064989(A003973(n)).

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 36, 44, 72, 96, 112, 128, 132, 160, 180, 220, 288, 336, 352, 360, 384, 396, 480, 528, 560, 640, 660, 880, 1044, 1056, 1152, 1232, 1344, 1404, 1440, 1680, 1760, 1920, 1980, 2088, 2352, 2376, 2464, 2496, 2640, 3168, 3600, 3696, 3920, 4032, 4400, 4736, 5220, 5280, 5376, 5760, 5824, 6075, 6144, 6160
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Comments

Of 5263 initial terms (terms < 2^32), only 67 are odd, and of these, only two, 1 and 1525391261 (= 503^2 * 6029) are in A007310. Of 5263 initial terms, 4653 are multiples of 3, 2331 are multiples of 81, and 3780 are multiples of 5.

Crossrefs

Cf. A000010, A000203, A003961, A003973, A353790, A353797 (subsequence).
Cf. also A353795.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
    A353790(n) = { my(s=sigma(A003961(n))); (eulerphi(s)*A064989(s)); };
    isA353796(n) = !(A353790(n)%n);
Showing 1-2 of 2 results.