cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353797 Numbers k such that k*A003557(A003961(k)) divides A353790(k), where A353790(n) = phi(A003973(n)) * A064989(A003973(n)).

Original entry on oeis.org

1, 2, 4, 44, 132, 220, 396, 660, 1980, 3920, 4400, 8800, 11484, 13200, 13328, 22000, 26400, 30800, 39984, 57420, 66640, 74800, 92400, 119952, 149600, 199920, 224400, 269892, 277200, 448800, 523600, 599760, 673200, 771012, 1063692, 1345792, 1346400, 1570800, 3478608, 4037376, 4712400, 5664400, 6344448, 8038800, 10574080
Offset: 1

Views

Author

Antti Karttunen, May 12 2022

Keywords

Comments

Note that A003557(A003961(n)) [= A003961(A003557(n))] is a divisor of A003972(n), therefore the set of k such that A353789(k) divides A353790(k) is a subset of this sequence.
Of 101 initial terms (terms < 2^32) all others apart from a(1) = 1 and a(2) = 2 are multiples of 4.

Crossrefs

Programs

  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
    A353790(n) = { my(s=sigma(A003961(n))); (eulerphi(s)*A064989(s)); };
    isA353797(n) = !(A353790(n)%(n*A003557(A003961(n))));