A353856 Triangle read by rows where T(n,k) is the number of integer compositions of n with run-sum trajectory (condensation) ending in a composition of length k.
1, 0, 1, 0, 2, 0, 0, 2, 2, 0, 0, 5, 2, 1, 0, 0, 2, 12, 2, 0, 0, 0, 8, 10, 12, 2, 0, 0, 0, 2, 32, 23, 6, 1, 0, 0, 0, 20, 26, 51, 28, 3, 0, 0, 0, 0, 5, 66, 109, 52, 22, 2, 0, 0, 0, 0, 8, 108, 144, 188, 53, 10, 1, 0, 0, 0, 0, 2, 134, 358, 282, 196, 48, 4, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 0 0 2 2 0 0 5 2 1 0 0 2 12 2 0 0 0 8 10 12 2 0 0 0 2 32 23 6 1 0 0 0 20 26 51 28 3 0 0 0 0 5 66 109 52 22 2 0 0 0 0 8 108 144 188 53 10 1 0 0 0 0 2 134 358 282 196 48 4 0 0 0 0 For example, row n = 6 counts the following compositions: . (6) (15) (123) (1212) . . (33) (24) (132) (2121) (222) (42) (141) (1113) (51) (213) (2112) (114) (231) (3111) (411) (312) (11211) (1122) (321) (111111) (2211) (1131) (11112) (1221) (21111) (1311) (11121) (12111)
Crossrefs
Row sums are A011782.
Row-lengths without zeros appear to be A131737.
The version for partitions is A353843.
The last part of the same trajectory is A353855.
Column k = 1 is A353858.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A333627 ranks the run-lengths of standard compositions.
A353932 lists run-sums of standard compositions.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],Length[FixedPoint[Total/@Split[#]&,#]]==k&]],{n,0,15},{k,0,n}]
Comments