A353857 Numbers k such that the k-th composition in standard order has run-sum trajectory ending in a singleton.
1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 31, 32, 36, 39, 42, 46, 59, 60, 63, 64, 127, 128, 136, 138, 139, 142, 143, 168, 170, 174, 175, 184, 186, 187, 232, 238, 239, 248, 250, 251, 255, 256, 292, 316, 487, 511, 512, 528, 543, 682, 750, 955, 1008, 1023, 1024, 2047
Offset: 1
Keywords
Examples
The terms together with their binary expansions and corresponding compositions begin: 1: 1 (1) 2: 10 (2) 3: 11 (1,1) 4: 100 (3) 7: 111 (1,1,1) 8: 1000 (4) 10: 1010 (2,2) 11: 1011 (2,1,1) 14: 1110 (1,1,2) 15: 1111 (1,1,1,1) 16: 10000 (5) 31: 11111 (1,1,1,1,1) 32: 100000 (6) 36: 100100 (3,3) 39: 100111 (3,1,1,1) 42: 101010 (2,2,2) 46: 101110 (2,1,1,2) 59: 111011 (1,1,2,1,1) 60: 111100 (1,1,1,3) 63: 111111 (1,1,1,1,1,1)
Crossrefs
The version for partitions is A353844.
These compositions are counted by A353858.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A333627 ranks the run-lengths of standard compositions.
A353932 lists run-sums of standard compositions.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Select[Range[100],Length[FixedPoint[Total/@Split[#]&,stc[#]]]==1&]
Comments