A353860 Number of collapsible integer compositions of n.
0, 1, 2, 2, 5, 2, 12, 2, 26, 9, 36, 2, 206, 2, 132, 40, 677, 2, 1746, 2, 3398, 136, 2052, 2, 44388, 33, 8196, 730, 79166, 2, 263234, 2, 458330, 2056, 131076, 160, 8804349, 2, 524292, 8200, 13662156, 2, 36036674, 2, 48844526, 90282, 8388612, 2, 1971667502, 129
Offset: 0
Keywords
Examples
The a(0) = 0 through a(6) = 12 compositions: . (1) (2) (3) (4) (5) (6) (11) (111) (22) (11111) (33) (112) (222) (211) (1113) (1111) (1122) (2112) (2211) (3111) (11112) (11211) (21111) (111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
repcams[q_List]:=repcams[q]=Union[{q},If[UnsameQ@@q,{},Union@@repcams/@ Union[Insert[Drop[q,#],Plus@@Take[q,#],First[#]]&/@ Select[Tuples[Range[Length[q]],2],And[Less@@#,SameQ@@Take[q,#]]&]]]]; Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],MemberQ[repcams[#],{n}]&]],{n,0,15}]
-
PARI
a(n) = if(n==0, 0, 1 - sumdiv(n, d, if(d>1, moebius(d)*a(n/d)^d ))) \\ Andrew Howroyd, Feb 04 2023
Formula
Sum_{d|n} mu(d)*a(n/d)^d = 1 for n > 0. - Andrew Howroyd, Feb 04 2023
Extensions
Terms a(16) and beyond from Andrew Howroyd, Feb 04 2023
Comments