A353868 Numbers k such that the Carmichael function A002322(k) divides Dedekind psi A001615(k).
1, 2, 3, 4, 6, 8, 9, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 52, 54, 56, 60, 63, 64, 65, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 104, 105, 108, 112, 117, 119, 120, 126, 128, 130, 135, 140, 144, 150, 156, 160, 162, 168, 175, 180, 182, 189, 190, 192, 195, 196, 200, 204, 208, 210, 216
Offset: 1
Links
- user142929, A definition related to pseudoprimes and the Dedekind psi function, MathOverflow, 2022.
Programs
-
Mathematica
psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[216], Divisible[psi[#], CarmichaelLambda[#]] &] (* Amiram Eldar, May 09 2022 *)
Comments